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1
COMPUTING THE MASS OF AN OBJECT

BACKGROUND

1. Technical Field

This disclosure is generally related to techniques to process
data produced by three-dimensional (“3D”) scanners, such
as, for example, magnetic resonance scanners.

2. Description of the Related Art

Three-dimensional volume scanners, such as magnetic
resonance imaging (“MRI”) scanners, computed topology
(“CT”) scanners, computed axial tomography (“CAT”) scan-
ners and positron emission tomography (“PET”) scanners
produce three-dimensional images of an object, such as an
image of a human brain, an image of a bone, etc. The data
produced from such scans may be represented by a data set of
points, each point having an associate value, such as an inten-
sity gray-scale value. Pseudo-three-dimensional images in
two dimensions may be produced using various techniques,
including volume-based techniques, such ray-casting, tex-
ture-based methods, surface-based algorithms, such as
Marching Cubes, etc.

BRIEF SUMMARY

In an embodiment, a system comprises: a memory; and one
or more processing devices configured to: determine inter-
section points of a representation of a surface in an image
space with cubes defining the image space, the surface defin-
ing a surface of an object; and determine an estimated mass of
at least a portion of the object by: determining an estimated
mass contribution of a first set of cubes contained entirely
within the representation of the surface; determining an esti-
mated mass contribution of a second set of cubes having
intersection points with the representation of the surface; and
estimating a mass of the at least a portion of the object based
on the estimated mass contribution of the first set of cubes and
the estimated mass contribution of the second set of cubes. In
an embodiment, the one or more processing devices are con-
figured to determine the intersection points by: defining an
initial representation of the surface in the image space; refin-
ing the initial representation of the surface in the image space;
and determining the intersection points of the refined repre-
sentation of the surface with the cubes defining the image
space. In an embodiment, refining the initial representation of
the surface in the image space comprises segmenting the
object and refining the initial representation to correspond to
a segmented portion of the object. In an embodiment, refining
the initial representation comprises applying a marching
cubes algorithm to the segmented portion of the object. In an
embodiment, refining the initial representation comprises
deforming the initial representation. In an embodiment, the
one or more processing devices are configured to process an
image dataset associating vertexes of the cubes defining the
image space with intensity values indicative of density and
the defining the initial representation comprises: determining
a maximum intensity threshold based on the dataset; deter-
mining a minimum intensity threshold based on the dataset;
and determining an intensity threshold based on the maxi-
mum and minimum intensity thresholds. In an embodiment,
refining the initial representation comprises deforming the
initial representation by iteratively applying local movement
vectors to vertexes of a plurality of triangles defining the
surface. In an embodiment, a local movement vector u of a
vertex of a triangle is defined by: u=u,+u,+u;, where u, is a
vector component representing local movement within the
surface, u, is a vector component representing local move-
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ment along surface normal, and u; is a vector component
representing local movement deforming the surface toward a
surface of the segmented object. In an embodiment, the object
is one of a human brain and a human femur. In an embodi-
ment, the one or more processing devices are configured to
determine the estimated mass, Mass, of the at least a portion
of the object according to:

n m
Mass = Z Vieds + Z Vo daiis
T T

where n is a number of cubes in the first set of cubes, V, .is a
volume of a cube in the first set of cubes, d, is an average
density of the cube in the first set of cubes, m is a number of
cubes in the second set of cubes, V,, is a volume of a portion
of a cube in the second set of cubes contained within the
surface, and d,; is an average density of the portion of the
cube in the second set of cubes. In an embodiment, determin-
ing the estimated mass contribution of a second set of cubes
comprises representing a cube in the second set of cubes as a
plurality of sub-cubes and V, is a total volume of the cube in
the second set of cubes multiplied by a ratio of a number of
sub-cubes of the cube in the second set of cubes determined to
be within the at least a portion of the object to a total number
of sub-cubes of the cube in the second set of cubes. In an
embodiment, the total number of sub-cubes in the cube is
four.

In an embodiment, a method comprises: determining inter-
section points of a representation of a surface in an image
space with cubes defining the image space, the surface rep-
resenting a surface of an object; and estimating a mass of at
least a portion of the object, the estimating including: esti-
mating a mass contribution of a first set of cubes contained
entirely within the representation of the surface; estimating a
mass contribution of a second set of cubes having intersection
points with the representation of the surface; and estimate a
mass of the at least a portion of the object based on the
estimated mass contribution of the first set of cubes and the
estimated mass contribution of the second set of cubes. In an
embodiment, determining the intersection points comprises:
defining an initial representation of the surface in the image
space; refining the initial representation of the surface in the
image space; and determining the intersection points of the
refined representation of the surface with the cubes defining
the image space. In an embodiment, refining the initial rep-
resentation of the surface in the image space comprises seg-
menting the object and refining the initial representation to
correspond to a segmented portion of the object. In an
embodiment, the method comprises applying a marching
cubes algorithm. In an embodiment, refining the initial rep-
resentation comprises deforming the initial representation. In
an embodiment, the method comprises processing an image
dataset associating vertexes of the cubes defining the image
space with intensity values indicative of density. In an
embodiment, the estimated mass of the at least a portion of the
object is:

n m
Mass = Z Vieds + Z Vo daiis
I I

where n is a number of cubes in the first set of cubes, V,_isa
volume of a cube in the first set of cubes, d, is an average
density of the cube in the first set of cubes, m is a number of
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cubes in the second set of cubes, V,, is a volume of a portion
of a cube in the second set of cubes contained within the
surface, and d,; is an average density of the portion of the
cube in the second set of cubes. In an embodiment, estimating
the mass contribution of a second set of cubes comprises
representing a cube in the second set of cubes as a plurality of
sub-cubes and V, is a total volume of the cube in the second
set of cubes multiplied by a ratio of a number of sub-cubes of
the cube in the second set of cubes determined to be within the
at least a portion of the object to a total number of sub-cubes
of the cube in the second set of cubes.

In an embodiment, a non-transitory computer-readable
memory contains instructions configured to cause a process-
ing device to estimate a mass of an object by performing a
method, the method comprising: determining intersection
points of a representation of a surface in an image space with
cubes defining the image space, the surface representing a
surface of an object; and estimating a mass of at least a portion
of the object, the estimating including: estimating a mass
contribution of a first set of cubes contained entirely within
the representation of the surface; estimating a mass contribu-
tion of a second set of cubes having intersection points with
the representation of the surface; and estimating a mass of the
at least a portion of the object based on the estimated mass
contribution of the first set of cubes and the estimated mass
contribution of the second set of cubes. In an embodiment,
determining the intersection points comprises: defining an
initial representation of the surface in the image space; refin-
ing the initial representation of the surface in the image space;
and determining the intersection points of the refined repre-
sentation of the surface with the cubes defining the image
space. In an embodiment, refining the initial representation
comprises deforming the initial representation. In an embodi-
ment, the estimated mass of the at least a portion of the object
is:

n m
Mass = Z Vieds + Z Vpdais
I I

where n is a number of cubes in the first set of cubes, V, _is a
volume of a cube in the first set of cubes, d, is an average
density of the cube in the first set of cubes, m is a number of
cubes in the second set of cubes, V,, is a volume of a portion
of a cube in the second set of cubes contained within the
surface, and d_,, is an average density of the portion of the
cube in the second set of cubes.

In an embodiment, a system comprises: a memory; and one
or more processing devices configured to: define an initial
representation of a surface in an image space having cubes
defining the image space, the surface representing a surface of
an object; and deform the initial representation of the surface
by iteratively applying local movement vectors to vertexes of
a plurality of triangles defining the surface, wherein a local
movement vector u of a vertex of a triangle is defined by:
u=u,+u,+u;, where u, is a vector component representing
local movement within the surface, u, is a vector component
representing local movement along surface normal, and u; is
a vector component representing local movement deforming
the surface toward a surface of the segmented object. In an
embodiment, the system is configured to: segment the object
in the image space; refine the initial representation to corre-
spond to a segmented portion of the object; and apply a
marching cubes algorithm to the refined representation.

In an embodiment, a method comprises: defining an initial
representation of a surface in an image space having cubes
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defining the image space, the surface representing a surface of
an object; and deforming the initial representation of the
surface by iteratively applying local movement vectors to
vertexes of a plurality of triangles defining the surface,
wherein a local movement vector u of a vertex of a triangle is
defined by: u=u,+u,+u;, where u, is a vector component
representing local movement within the surface, u, is a vector
component representing local movement along surface nor-
mal, and u; is a vector component representing local move-
ment deforming the surface toward a surface of the segmented
object. In an embodiment, the method of claim 27 comprises:
segmenting the object in the image space; refining the initial
representation to correspond to a segmented portion of the
object; and applying a marching cubes algorithm to the
refined representation. In an embodiment, the object is one of
a human brain and a human femur.

In an embodiment, a system comprises: means for defining
an initial representation of a surface in an image space having
cubes defining the image space, the surface representing a
surface of an object; means for iteratively applying local
movement vectors to vertexes of a plurality of triangles defin-
ing the surface to produce a refined representation of the
surface; and means for estimating a mass of the object based
on the refined representation of the surface.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 illustrates a cube of an embodiment of a method of
illustrating a surface using a Marching Cubes algorithm.

FIG. 2 illustrates a shape of part of a surface crossing a
cube.

FIG. 3 illustrates a set of possible shapes of surfaces cross-
ing a cube.

FIG. 4 illustrates example ambiguities in shapes of sur-
faces crossing a cube.

FIG. 5 illustrates an embodiment of a system to determine
the mass of an object.

FIG. 6 illustrates a basic cube entirely within a surface.

FIGS. 7 and 8 illustrate cubes crossed by a surface.

FIGS. 9 and 10 illustrate an embodiment of dividing a basic
cube into smaller cubes.

FIG. 11 illustrates an embodiment of a method of comput-
ing a mass of an object.

FIG. 12 illustrates an embodiment of a method of provid-
ing a mass and rendering an image of an object.

FIG. 13 illustrates an embodiment of a method of generat-
ing a mesh of a brain or a portion of a brain.

FIG. 14 illustrates an embodiment of forming a mesh of a
brain using triangular tessellation.

FIG. 15 illustrates example magnetic resonance head
images with a white line tracking the outline of the portion of
the brain.

FIG. 16 illustrates an embodiment of a method of surface
triangles for a cube cut by the surface based on edge and
triangulation tables.

FIG. 17 illustrates a pseudo three-dimensional image of a
femur.

FIG. 18 illustrates vector pairs from a central vertex to
consecutive neighboring vertexes.

FIG. 19 illustrates normal and tangential components to a
local surface.
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FIG. 20 illustrates a relationship between local curvature,
vertex spacing and a perpendicular component of a difference
vector.

FIG. 21 illustrates examples estimates of the exterior sur-
face of a skull.

FIG. 22 illustrates application of a segmentation routine to
an image.

FIG. 23 illustrates a comparison of results of an embodi-
ment of a brain extraction tool results of other brain extraction
algorithms.

FIG. 24 illustrates a rendering of an image of a brain on a
mobile device according to an embodiment.

FIG. 25 illustrates an embodiment of a method of a femur
extraction tool.

FIG. 26 illustrates images of a femur.

FIGS. 27A, 27B and 42 illustrate binarization of an image
slice.

FIGS. 28 to 31 show images of femurs.

FIG. 32 illustrates an embodiment of 3-D dilation.

FIG. 33 shows an image of a femur.

FIG. 34 illustrates an embodiment of an initial mesh of an
FET.

FIGS. 35 to 37 show images of femurs.

FIGS. 38 and 39 show images of human brains and femurs.

FIG. 40 shows images of femurs.

FIG. 41 illustrates an embodiment of deforming an initial
femur mask according to an embodiment of an FET.

FIG. 43 shows an image of a femur slice.

FIG. 44 shows images of femurs.

FIG. 45 shows an image of a brain.

FIG. 46 illustrates the concept of marching cubes as
applied to a human brain.

FIG. 47 illustrates an embodiment of femur extraction
method.

FIG. 48 illustrates an embodiment of a femur extraction
method.

DETAILED DESCRIPTION

In the following description, certain details are set forth in
order to provide a thorough understanding of various embodi-
ments of devices, systems, methods and articles. However,
one of skill in the art will understand that other embodiments
may be practiced without these details. In other instances,
well-known structures and methods associated with, for
example, volume scanners, processors, controllers, etc., have
not been shown or described in detail in some figures to avoid
unnecessarily obscuring descriptions of the embodiments.

Unless the context requires otherwise, throughout the
specification and claims which follow, the word “comprise”
and variations thereof, such as “comprising,” and “com-
prises,” are to be construed in an open, inclusive sense, that is,
as “including, but not limited to.”

Reference throughout this specification to “one embodi-
ment,” or “an embodiment” means that a particular feature,
structure or characteristic described in connection with the
embodiment is included in at least one embodiment. Thus, the
appearances of the phrases “in one embodiment,” or “in an
embodiment” in various places throughout this specification
are not necessarily referring to the same embodiment, or to all
embodiments. Furthermore, the particular features, struc-
tures, or characteristics may be combined in any suitable
manner in one or more embodiments to obtain further
embodiments.

The headings are provided for convenience only, and do
not interpret the scope or meaning of this disclosure or the
claims.
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The sizes and relative positions of elements in the drawings
are not necessarily drawn to scale. For example, the shapes of
various elements and angles are not drawn to scale, and some
of these elements are enlarged and positioned to improve
drawing legibility. Further, the particular shapes of the ele-
ments as drawn are not necessarily intended to convey any
information regarding the actual shape of particular elements,
and have been selected solely for ease of recognition in the
drawings.

An embodiment is generally related to a tool capable of
visualizing a tridimensional image elaborated by an available
dataset, for example, a medical dataset based on a Magnetic
Resonance of a brain. The inventors have realized that such
data sets and visualizing techniques may be employed in
techniques to estimate the mass of an object, for both medical
and non-medical applications. An embodiment determines
the mass of an object described by a file containing data
representative of density samples of the object. The file may
be produced by a 3D volume scanner, for example a magnetic
resonance scanner. An embodiment comprises an application
of' an embedded system, such as a modern PDA, which may
give to medical staff a portable, fast and good quality tool to
use in a diagnostic process. An embodiment employs tridi-
mensional reconstruction from medical scanners as MRI, CT,
CAT or PET. An embodiment may be employed in a system-
atic way in a medical or industrial pipeline, for example as a
diagnostic tool, a quality control tool, etc.

Among the factors considered are trade-offs in terms of
computational time and quality of the results, since the
resources available in a portable device may be limited and it
may not be feasible or desirable to wait a long time for valid
results. For example, a tool producing results close to real-
time may be desired.

One rendering method that may provide quality image
results is a ray-casting algorithm. Unfortunately, a ray-cast-
ing algorithm may be very CPU-intensive, and may not pro-
vide real-time frame rates even when using a server to run the
ray-casting algorithm. On the contrary, a ray-casting algo-
rithm may take several seconds (or minutes or hours depend-
ing on the available hardware) to elaborate just one frame.

Another rendering method employs a texture-based algo-
rithm, which visualizes a tri-dimensional object as simply a
collection of bi-dimensional ones. For example, in medical
field an exam may be a collection of slices. In texture-based
rendering, those slices are used to create a tridimensional
shape. Text-based methods may provide a fast, near real-time,
way to render a tridimensional object. The quality is not so
poor. However, text-based rendering does not add any infor-
mation to what was given by the bi-dimensional slices, it
simply returns a global vision.

The two embodiments of algorithms described above are
called volumetric, since the algorithms are directed to visu-
alizing the entire volume of an object. Another class of algo-
rithms comprises surface-oriented algorithms. One surface-
oriented algorithm is the Marching Cubes (MC) algorithm.
MC is directed to visualizing a surface rather than a volume.
Thus, a surface-based algorithm may produce from a single
dataset many outputs, for example, as many as the number of
surfaces forming a volume, using a surface visualizer such as
MC.

The inventors recognized that the MC algorithm has some
really interesting features which may be employed for the
purposes of estimating the mass of an object: for each surface
to visualize, an MC algorithm may use a limited amount of
time to run (for example, less than 5 min) and then the image
may be shown at real-time frame-rate; the MC is an algorithm
suitable for parallel processing, which may facilitate integra-
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tion in hardware (e.g., in a graphics processing unit); and the
quality of the surface is generally sufficiently good. Another
really interesting point in an MC embodiment is that, with a
very limited human intervention, an MC algorithm may be
employed as a rough segmentation tool, since it may be used
to divide a particular surface from the rest of an examined
object.

Embodiments are described herein with reference to a
medical examination space. However, embodiments may be
employed in other situations and for other purposes, such as
examination of products, infrastructure (e.g., wiring, piping,
concrete thicknesses), etc.

The input format file for an embodiment of a Marching
Cube implementation is a flow of scalar values (called vox-
els), each voxel being associated with a position in 3D space,
and which may be viewed as representing the density of the
matter present in that portion of space. The Marching Cube
algorithm creates a polygonal mesh (triangles usually) that
represent an iso-surface. For example, if the intensity values
in a data set range from zero to one, when an iso-value equal
to, for example, 0.5 is chosen, the MC algorithm visualizes a
surface comprised of the points in the data set having the
value 0.5.

The MC algorithm divides the three dimensional space in
which the surface to visualize is inserted into small volumes,
such as cubes, which may be referred to as basic cubes in this
document. The size of the cube may be fixed if working with
a discrete dataset, as in the case of an image scan. The MC
algorithm estimates whether and how an iso-surface passes
through a cube (with which shape within the cube, cutting
which edges of the cube, etc.).

The computation proceeds cube by cube (this is the reason
why MC is called marching cubes), and when the eight cor-
ners of a cube show values both above and below the thresh-
old in input, the isosurface to visualize crosses that cube.
Depending on the positions of those values, a set of triangles
is added to the complete mesh. Note that just the eight values
at basic cube’s corners may be employed. The hypothesis
behind this procedure is that the field inside the cube varies
trilinearly.

The original implementation of MC had some issues in
defining the possible cases with which the surface could cross
the basic cube. Later contributions helped to solve those
issues, defining what they are called internal and external
ambiguities and providing mathematical tools (asymptotic
decider, for example) to select among all the (increased)
number of the possible set of triangles for each basic cube.

Many other contributions for improving MC algorithm are
available, for increasing the execution speed, for allowing the
visualization of a mixed isosurface or for improving the qual-
ity of the triangle’s shape, just to mention a few application
fields.

Starting from this point the inventors developed an
embodiment through which it is possible to compute the mass
(volume multiplied by density) of the object of an examina-
tion, such as a medical examination, or of a portion of an
object of an examination. In addition, the inventors developed
further refinements to the MC algorithm to better define the
meshes used to visual surfaces of objects.

As noted above, MC is a surface-rendering algorithm to
build a mesh, such as a mesh comprising triangles. Those
triangles form the boundary of a volume.

Density values frequently are already available in datasets
for physical examinations. For example, the grayscale values
in a medical examination dataset may be employed as the
density values. Thus, the information to estimate the mass is
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available. In an embodiment, the computation of the mass
may be inserted into the MC code, to exploit the MC code’s
strong parallelizability.

In this way the total mass may be computed by the sum-
mation of the contribution given by each basic cube.

In an embodiment, two types of basic cubes may be
employed to estimate the mass: cubes which based on the
grayscale values are entirely within the surface (e.g., cubes
which have at their corners all grayscale values within the
isosurface, or between two isosurfaces), and cubes that are
crossed by the isosurface.

The first type gives a mass contribution that is easy to
compute in an embodiment: it is generally sufficient to mul-
tiply the three resolutions (defined in this case as the distances
between a voxel and the following one in each of the three
planes) and the average between the eight corner grayscale
values.

The second type may be used with a more accurate analysis
in an embodiment. The basic cube is divided into a number of
smaller cubes. Each smaller cube is evaluated to decide if the
smaller cube lies inside or outside the surface. A density value
is computed for each smaller cube determined to be inside the
surface through a trilinear interpolation of the basic cube
eight values. Based on the number of smaller cubes inside the
surface, the contribution given by that basic cube to the total
volume may be estimated. Consequently, the basic cube’s
contribution to the total mass may be computed by multiply-
ing the volume contribution by the arithmetic average of the
sum of all density values trilinearly interpolated. Of course,
when a larger number of smaller cubes is employed, a better
estimate may be obtained, perhaps at the cost of a longer
execution time.

This mass computation, as already mentioned, may be
made for the entire object or for just a portion of the object
(e.g., a portion between two isosurfaces, a portion having a
density above a threshold, etc.).

The applications of embodiments of determining the mass
of an object could have a number of practical applications.
For example, in the medical field, determining the mass
according to an embodiment may be employed to compute
the strength of a bone, to prevent or diagnose osteoporosis, or
determine the mass of a tumor, etc. Of course, embodiments
may be employed in other fields, and employed with other
types of density datasets.

MC algorithms have been employed to render images. See
Paul Bourke, Polygonising a scalar field (1994). The 3D
space is divided into small adjacent cubes. A convention
using indexing of edges and vertexes is shown in FIG. 1.

The eight vertexes of the cube each have a corresponding
voxel. The voxels may be, for example, the values of a scalar
field contained in a medical exam file. Based on those values,
the vertexes of the cube which are inside the iso-surface and
which are outside the iso-surface are determined.

In an embodiment, a threshold value may be specified by a
user at run-time for comparison to the voxel values at the
vertexes of the cubes. If the value of a voxel at a vertex of the
cube is above this threshold value, that vertex point is con-
sidered outside the iso-surface, and vice versa. Of course, in
other embodiments, a point may be considered inside the
iso-surface if the value at the vertex is above the threshold
value, and vice versa.

Consequently, the shape of the part of surface that crosses
acube may be estimated. For example, with reference to FIG.
2, if just vertex 3 is inside the surface, a shape 202 may be
determined to be the shape of the part of the surface that
crosses the cube.
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Since there are 8 vertexes in the cube, and the possibilities
are just 2 for each vertex (inside/outside), there are 256 pos-
sible combinations, and for any of these there will be a pos-
sible shape for the surface that crosses the cube. Excluding
configurations that are symmetric, rotated or mirrored, the
basic configurations are just 15, as shown in the set of shapes
crossing a cube of FIG. 3.

Note that there is a biunivocal correspondence between
which points are inside or outside the surface and the cutting
edges of the cube and the number of triangles composing the
surface. Thus, it is possible to build one or more Look-Up
Tables (“LUT”) to speed up the execution of the program.

To retrieve a corresponding entry in the LUTs, an index is
computed looking at the values of the vertexes. A zero is
assigned to vertexes below the surface and a one to vertexes
above it. The Bourke reference includes example code to
compute an index.

An 8-bit index may point to a location in a table which
stores 12-bit numbers. See FIG. 16. Those numbers describe
which edges are cut, one bit each. As illustrated, a zero rep-
resents non-cut edges, and a one represents cut edges.
Although the basic configurations are just 15, in the table of
an embodiment all 256 possibilities are present, described in
hexadecimal codes. The Bourke reference includes an
example table.

Where the edges are crossed may be computed by linearly
interpolating the intensity and the position values of the
extreme points of the edge to cut with the formula:

P=Pl+(isovalue-V1)(P2-P1)/(V2-V1)

where P1 and P2 are the positions of the points and V1 and V2
the values of the field in those points. A vector may be gen-
erated which includes all the interpolated values, one for each
edge crossed.

The facets (triangles) of the surface crossing the cube are
built. A triangulation LUT may be used to build the triangles.
For every configuration, there are a determined number of
triangles (5 at most) having as vertexes the cut edges. The first
8-bit index may be used again to point to the table which
stores edges touched by the triangles.

A few lines of an embodiment of a triangulation table from
Bourke appear below:

int triTable[256][16] =

{{-1,-1,-1,-1,-1,-1,-1,-1,-1, -1, -1,-1,-1,-1,-1, -1},
{0, 8.3, 01, 21, 21, 21, -1, 1, 21,21, -1, 1,21, <1 -1}
{0,1,9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1},
{1.8.3,9,8 1, -1, <1, ~1.~1,~1,~1,~1, -1, 1, -1},
{1,2,10,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 -1,-1},
{0,8,3,1 2,10,-1,-1,-1,-1,-1,-1,-1,-1,-1 -1}
{9,2,10,0,2,9,-1,-1,-1, -1, -1, -1, -1, -1, -1, -1},
{2,8,3, ,10,8,10,9,8,-1,-1,-1, -1, -1, -1, -1},

Ifthe number of triangles needed is less than the maximum,
the unused locations of the table may be set to indicate the
locations is unused, for example, unused locations may be set
equal to -1.

The last lines of code of an example presented in Bourke
store into an array of structures the coordinates of the triangle
vertexes.

The use of look-up tables allows a very fast computation,
even in low performance machines, obtaining a good result.

FIG. 16 illustrates an embodiment of a method 1600 to
identify a surface cutting through a cube. At 1602, the thresh-
old iso-value is subtracted from the value of the voxel or
iso-value of each vertex of the cube and a sign for the vertex
is determined. At 1604, the cell case is determined based on

25

30

40

45

50

60

10

the vertexes which are inside the surface. Whether each vertex
is inside or outside the surface may be determined based on
the sign. For example, if a vertex is positive, the vertex may be
considered outside the surface, and if the sign is negative, the
vertex may be considered inside the surface. As illustrated,
the blue vertex is determined to be inside the surface and the
case is one of 256 cases corresponding to the case where this
particular vertex is inside the surface while the other vertexes
are outside the surface.

At 1606, an edge table is accessed using an index corre-
sponding to the case of the cube (e.g., 00001000) to determine
the active edges of the cube (e.g., based on which vertexes are
determined to be inside the surface). As illustrated, the red
edges are determined to be active based on the access to the
edge table. Active edges are edges which interconnect two
vertexes with opposite signs.

At 1608, the intersections belonging to active edges are
determined, for example by using interpolation. The green
intersection points are determined for the illustrated case.

At 1610, a triangulation table is accessed, using the same
index used to access the edge table. Information retrieved
from the triangulation table is used to determine how the
intersections are to be connected to form one or more tri-
angles for the surface crossing the cube.

The MC algorithm facilitates a high resolution renderer,
since it is possible to use smaller cubes, depending on the
characteristic of the dataset, without significant loss of per-
formance. The flexibility to choose the preferred threshold
value of iso-surface facilitates adding a segmentation step,
and this is an advantage point for MC over volume-based
rendering. In addition to user input thresholds, default thresh-
old values may be employed, variable threshold values may
be employed, multiple threshold values may be employed,
etc., and various combinations thereof.

In an MC embodiment, there may sometimes be an ambi-
guity in the shape of the surface inside the cube. FIG. 4
illustrates examples of ambiguities in which the vertex points
inside the surface are the same, but the shape is not. The left
two cubes of FIG. 4 illustrate a face ambiguity, and the right
two cubes illustrate an internal ambiguity. This may lead to
imperfections in the rendered surface, in particular in creation
ot’holes or in creation of surfaces which are not topologically
correct, due to more than one choice when putting together
two adjacent cubes. Resolving those problems increases the
complexity of the algorithm. For example, there may be more
than one set of cut edges and triangles for each configuration.

An improvement to MC to address the ambiguities has
been proposed by Eugeny Chernyaev. See Eugeni V. Chern-
yaev, Marching Cubes 33: construction of topologically cor-
rect isosurfaces (1995).

Chernyaev explained that the Bourke implementation, in
order to simplify the calculations, takes into account just one
variant of the iso-surface topologies derivable from the trilin-
ear interpolation formula. Chernyaev divided possible ambi-
guities into two groups: face ambiguities (when a face has 2
points above and 2 below the surface diagonally opposed) and
internal ambiguities (when a similar situation arises in 3D
space). See FIG. 4. Briefly, Chernyaev discussed possible
topological configurations (33 in total) and some mathemati-
cal methods to choose among them. The most famous method
is the so called asymptotic decider, used also in other MC
variations.

This algorithm does not break the correspondence between
the number of points under and over the surface and the cut
edges, but it breaks with the number of triangles built. Prac-
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tically, the asymptotic decider algorithm constructs a bigger
look-up table and introduces computations to choose among
the ambiguous cases.

The increasing of the size of the LUT does not generally
affect the computational time, while the computations to
choose in the ambiguous cases may increase the computa-
tional time. The increase generally is not a significant amount
for at least two reasons: the first is that not all the original
configurations are ambiguous (just 7 over 15) and the second
is that the ambiguities arise quite seldom, for very particular
shapes of surfaces. In addition, decreasing the size of the cube
will result in those particular cases arising less and less fre-
quently. Thus, use of an asymptotic decider algorithm may
produce a significant improvement in the result with a negli-
gible decrease in performance.

An embodiment of an implementation of MC modified to
determine a mass of an object may include further refine-
ments of MC, such as those elaborated by a collaboration
between the University of Rio de Janeiro and the University
of Sophia Antipolis, in France. See T. Lewiner, H. Lopes, A.
Wilson Vieira, G. Tavares, Efficient implementation of March-
ing Cubes cases with topological guarantees, Journal of
Graphics (2003). Lewiner, et al., heavily restarts from Chern-
yaev considerations, realizing a topologically correct LUT
having 730 entries, and improving testing for internal ambi-
guity.

Another kind of improvement to MC that may be included
in an embodiment is locally adaptive marching cubes. See M.
Glanznig, M. M. Malik, M. E. Grdller, Locally Adaptive
Marching Cubes through Iso-Value Variation.

Starting from the consideration that the data coming from
amedical exam or captured by another sensor of density or an
indication of density are implicitly noisy, the idea is to differ-
entiate, locally, the iso-value of the surface, in order to bal-
ance noise effects, or more properly, to visualize a mixed
iso-surface. This could be particularly useful for example if it
is desired to render two different tissues in two different
portions of the 3D space, with different iso-values. Of course,
Glanznig implicitly employs defining the range of the iso-
value and in which way the iso-value changes—linearly or
gaussian—and in which plane of the space. This may be done,
for example, by a user inputting ranges and changes to the
iso-value. In an embodiment, changes may be limited, for
example, to linear changes, such as varying the iso-value
linearly along a direction.

The inventors have discovered that this feature may be
particularly useful when applied to some types of datasets,
such as to bones inserted in cement block. FIG. 17 illustrates
an image of a femur in a concrete block which was generated
by varying a threshold iso-value linearly along a direction. In
this case, using this option, an embodiment facilitates visu-
alizing just the external bone surface and not the block out-
side. In particular, rendering of the head of the bone was
facilitated through use of locally adaptive setting of the
threshold iso-value. Locally adaptive setting of the iso-
threshold may be thought of as a smarter and more reliable
way to segment an object using Marching Cubes.

MC is a surface renderer, what is produced in output is a
definition, through a mesh composed generally of triangles,
of the borders of a volume. In addition, the examinations,
such as managed medical exams, often include density infor-
mation. The inventors have released that, knowing the volume
and the density, it is possible to compute the mass of the object
delimited by the mesh produced by MC.

In an embodiment, the inventors have discovered a new
numerical method to determine the mass of an object.
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In an embodiment, the procedure is similar to that used by
MC: proceeding in the computation cube by cube. Conse-
quently the total mass value is the summation of the contri-
bution given by all the basic cubes crossed by the surface and
by the cubes completely inside that surface:

n m
Mass = Z Vieds + Z Vo daiis
T T

The first summation involves the n cubes completely inside
the surface. An example cube (or cuboid) is shown in FIG. 6.
This is a significant difference with respect to MC. MC takes
into account just those cubes crossed by the surface. Itis noted
that one or more scaling factors may be employed in some
embodiments (e.g., the mass may be equal to a scaling factor
multiplied by the sum of the contributions of the basic cubes
crossed by the surface and by the cubes completely inside that
surface, for example when the voxel values are proportional
to the density at the corresponding point, scaling factors may
be employed to determined the individual components of the
summation, etc.).

The components of the above formula are discussed below,
to explain how to compute the components if the components
are not readily available according to an embodiment:

V,. (Volume of the basic cube) which may typically be
equal for all the current cubes, is the multiplication between
the three dimension’s resolution (the distance between the
center of a voxel and the following one in each of the three
orthogonal directions). The information about resolutions is
often already available, since this information is typically
specified in or derivable from parameters contained in the
header of datasets, such as medical datasets.

d, (density averaged) is the density value bound to the
current basic cube. Since the entire cube lies inside the vol-
ume, and the initial hypothesis of the MC itself is that the
density inside the basic cube varies trilinearly, this value may
be computed through the arithmetical average of the eight
corner voxels. For example,

V,=lengthxwidthxheight of the cube

D =the sum of the voxels of the corners of the cube/8.

In following lines an embodiment of a snippet of code that
implements the computation for a single basic cube is set
forth:

total_grid_ value =0;

for (i=0; i<7; i++) {

total__grid__value += grid.m__val__original[i];

¥

average_ grid_ value = (float)total__grid_ value / ( float)8;

total__mass += glob—>dists[0] * glob—>dists[1] * glob—>dists[2] *
average_ grid_ value;

The second summation may represent a challenging part,
since it involves those cubes m crossed by the surface, so the
technique adopted to compute it may heavily influence the
precision of the computation. FIGS. 7 and 8 illustrate
examples of a cube crossed by one or more a surfaces of an
object. InFIG. 7, the red area is inside the surface, represented
by the two triangles in the middle of the cube.

V,, is the contribution given by a basic cube crossed by the
surface to the total volume (e.g., the fraction of volume of the
basic cube which is inside the surface). To compute this
contribution the basic cube may be divided in a number of
smaller cubes. FIG. 9 illustrate an example embodiment of
dividing a basic cube into 8 smaller cubes, and is overlayed on
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the example of a cube crossed by a surface of FIG. 8. FIG. 10
illustrates a single smaller cube of a basic cube. The higher the
number of the smaller cubes, the greater will be the accuracy
and perhaps the longer the computational time. The number
of smaller cubes may be a large number.

In an embodiment, a value of 10 smaller cubes per side may
be chosen, for example, for a total of 1000 smaller cubes
inside the basic cube. The total number of smaller cubes is t,
and the subset of smaller cubes that lies inside the surface is
p-

So

p
Vo= = Vic.

To compute p, an embodiment determines for each smaller
cube whether the cube lies inside or outside the surface that
crosses the basic cube. The procedure is really simple, and it
reflects the mechanism already used by MC for building the
tridimensional mesh. Every smaller cube is assigned with a
density value, using for example trilinear interpolation of the
four nearest voxels. In this way, under the hypothesis that the
field varies linearly inside the basic cube, a density value may
be determined for each smaller cube. The smaller cubes lying
inside the surface are those having a density value above or
equal to the iso-level threshold requested by the user.

In an embodiment using the locally adaptive option, even
the iso-level may be interpolated (e.g., trilinearly interpo-
lated), in order to have a particular value related to each
smaller cube. A linear interpolation may be employed, for
example, in an embodiment of the locally adaptive scenario
where iso-level varies just along one direction.

d,,; is the density as the average of the trilinear interpola-
tions. Since now the basic cube is not entirely included inside
the surface, the value of the density relative to the portion of
volume involved in computation may not be accurate if it is
determined by using the arithmetical average of the eight
corner voxels, as it may vary depending on the placement
inside the cube of its portion inside the surface.

Practically d,,, may be the arithmetical average of all the
density values assigned to each smaller cube determined to be
within the surface. As already said each of the density values
may be the trilinear interpolation between the 8 voxels
belonging to the cube, each voxel being assigned a weight.
The different weights assigned to the voxels for the smaller
cube shown in FIG. 10 are illustrated as different colors (e.g.,
for the blue smaller cube, the blue voxel has the greatest
weighting, the red voxels have an intermediate weighting,
and the black voxels have the least weighting). So computa-
tion ofthe density value to link to each smaller cube of a basic
cube is useful both to decide if a smaller cube lies inside the
surface and to compute the average of the density of the
relevant volume portion (the average density of the smaller
cubes determined to be within the surface).

Note that even the threshold may be trilinearly interpolated
ifithas been expressed as a field of values, so that each cube’s
corner is compared with a different threshold value, as it may
happen in a locally adaptive version of MC.

With reference to FIG. 10, to evaluate if the smaller cube
lies inside or outside the surface, a density value to associate
with the smaller cube may be computed by trilinearly inter-
polating the voxel values belonging to the cube. As discussed
above, this interpolation may be weighted, so that the nearest
voxel (blue one), will have an higher weight with respect to
red ones, and red ones a higher weight with respect to black
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ones. If the iso-value is locally adaptive, it may be trilinearly
interpolated too. Finally, if the density value associated with
the smaller cube is below the threshold, the cube itself is
inside the surface, and it will contribute to the mass compu-
tation. Inthis case the density of'the volume portion interested
will be evaluated as the arithmetic average of the densities
associated with the smaller cubes.

Example lines of code that implement an embodiment of a
procedure for determining the mass of the cubes crossed by
the iso-surface are set forth at the end of this disclosure.

After d,,,; is computed, the mass of the object delimited by
the surface may be computed, for example, by using the
previously mentioned formula.

This type of computation could have an incredible number
of practical applications. The inventors have implemented it
using medical datasets that contain density information asso-
ciated with spatial coordinates, and remaining in the medical
field examples include the computation of the mass of a bone,
the mass of a tumor, etc. This type of computation can be
extended to other types of datasets that include density infor-
mation.

The precision of the computation may be arbitrarily
increased using a higher number of the smaller cubes inside
the basic cube. However, it is noted that the accuracy degree
is generally enhanced by the fact that there is generally com-
pensation between false positive and false negative.

This characteristic leads to good results even using a very
limited number of smaller cubes per side (2 or 4). In an
embodiment, a trade-off between accuracy and computa-
tional time was achieved using values between 8 and 12,
depending on the resolutions of the basic cubes (the smaller
the resolutions are, the fewer number of smaller cubes needed
to obtain sufficiently accurate results).

Note that a factor affecting the precision of the computa-
tion is the shape of the mesh: to compute the mass of an object
it is desirable to create a mesh that is as close-fitting as
possible to the borders of that object. This is in first instance
a iso-value tuning issue. However, in some embodiments an
object could be segmented before the mesh creation step to
facilitate creating more accurate mesh shapes. For example,
some human tissues have similar density values, and it may be
desirable to segment an image so an object may be analyzed
for purposes of determining the mass separate from other
portions of an image.

The improvements to the original MC definition helped in
building a more correct mesh and in performing some kind of
rough segmentation. However, further refinements may be
desired, such as in cases where it is desired to compute the
mass of an object having a density value very similar to the
density value of another object present in dataset (e.g., such as
soft tissues in a human body).

After the creation of the mesh, the value obtained in output
from an embodiment as a mass is the mass of the volume
delimited by that mesh, which may be visualized with any
mesh reader.

In order to improve this comparison, and to be sure that
what is visualized is really the object for which it is desired to
compute the mass, a post-processing step may be performed
to correct the topology. For example, to eliminate sources of
incoherence: such as holes, non-manifold edges, non-mani-
fold vertices, etc. See Xiao Han, et al., “Topology correction
in brain cortex segmentation using a multiscale, graph-based
algorithm,” Medical Imaging, IEEE Transactions on, vol. 21,
no. 2, pp. 109-121, February 2002; Segonne, F., et al., “Geo-
metrically Accurate Topology-Correction of Cortical Sur-
faces Using Nonseparating Loops,” Medical Imaging, IEEE
Transactions on, vol. 26, no. 4, pp. 518-529, April 2007.
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FIG. 5 is a functional block diagram of a system 500
implementing an embodiment of a system to determine a
mass of an object. The system 500 comprises a measurement
system 502 and a diagnostics system 504. The system 500 is
configured to perform one or more of the methods disclosed
herein to determine the mass of an object and/or render an
image of an object based on data received from the measure-
ment system.

The measurement system 502 measures characteristics of
an object, and as illustrated comprises a scanner 506 and a
data formatter 508. More than one scanner 506 may be
employed, although usually the measurements for a particu-
lar sample would be taken with one instrument. Other mea-
surement devices may be employed in the measurement sys-
tem 502, such as other density sensing devices.

The measurement system 502 may contain a separate data
formatter 508 to format the data collected by the measure-
ment system 502. Alternatively, the data formatter 508 may
be part of another component of the system 500, such as the
scanner 506 or the diagnostic system 504. The data formatter
508 may, for example, format data collected by a scanner 506
into a standard data file format. The data formatting may
format the data in a file format representing a set of points in
a three-dimensional or other dimensional space, each point
having a corresponding voxel representing a value of mea-
sured data at the corresponding point. The voxels may repre-
sent a density measurement. The measurement system 502
may comprise additional components, such as controllers,
memories and/or circuitry and hardware.

The diagnostic system 504 analyzes data received from the
measurement system 502, such as by using one or more of the
methods discussed in more detail elsewhere herein. In the
embodiment illustrated in FIG. 5, the diagnostic system 504
comprises a controller 510, a memory 512, a parser 514, a
control input/output interface 516, a data input/output inter-
face 518, a graphics engine 520, a statistics engine 522, a
display 524, a printer 526 and a diagnostic system bus 530.
The graphics engine may include an asymptotic decider AD.
The diagnostic system bus 530 may include a power bus,
control bus, and status signal bus in addition to a data bus. For
the sake of clarity, however, the various diagnostic system
buses are illustrated in FIG. 5 as the diagnostic system bus
530.

The diagnostic system 504 may be physically remote from
the measurement system 502. The measurement system 502
may be coupled to the diagnostic system 504 via one or more
communication links, such as the Internet, an extranet, and/or
an intranet or other local or wide area networks. Similarly,
components of the diagnostic system 504 may be physically
remote from one another and may be coupled together via
communication links, such as the Internet, an extranet, and/or
an intranet or other local or wide area networks. There may be
one or more diagnostic systems each coupleable to one or
more measurement systems. Data from a measurement sys-
tem may be stored on computer-readable medium and read
from the computer-readable medium by the diagnostic sys-
tem.

The diagnostic system 504 may be implemented in a vari-
ety of ways, including as separate subsystems. The diagnostic
system 504 may be implemented as a digital signal processor
(DSP), a state machine, discrete circuitry, an application-
specific integrated circuit (ASIC), or the like, or as a series of
instructions stored in a memory, such as the memory 512 and
executed by a controller, such as the controller 510, and
various combinations thereof. Thus, software modifications
to existing hardware may allow the implementation of the
diagnostic system 504. Various subsystems, such as the parser
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514 and the control input/output interface 516, are identified
as separate blocks in the functional block diagram of FIG. 5
because they perform specific functions (e.g., parsing data
sets; receiving user input; etc.). These subsystems may not be
discrete units but may be functions of a software routine,
which will probably, but not necessarily, be separately call-
able and hence identifiable elements. Any suitable software or
combinations of software may be used to implement the
diagnostic system 504, including, for example, WinList and/
or Java implemented with a Java Run Time Environment or a
3-D Java Run Time Environment. Look-up tables may be
employed.

While the illustrated embodiment denotes a single control-
ler 510, other embodiments may comprise multiple control-
lers. The memory 512 may comprise, for example, registers,
read only memory (“ROM”), random access memory
(“RAM”), flash memory and/or electronically erasable read
programmable read only memory (“EEPROM”), and may
provide instructions and data for use by the diagnostic system
504.

FIG. 11 illustrates an example embodiment of a method
1100 of computing a mass of an object. The embodiment ofa
method of FIG. 11 may be performed, for example, by using
an embodiment of the system of FIG. 5. At 1102, input data is
received or retrieved. At 1104, the data space is divided into
regular cubes, each corner of each cube having an associated
voxel, with each voxel associated with at least one cube. At
1106, each cube is evaluated to determine whether and how
the cube contributes to the mass of the object. If it is deter-
mined at 1108 that a cube is outside the volume defined by the
surface, the cube is determined not to contribute to the mass of
the object at 1110. Whether the cube contributes to the vol-
ume may be determined by comparing the voxels of the
vertexes of the cube with a density input threshold. For
example, in some embodiments when all the voxels of the
vertexes of a cube are above the threshold, the cube may be
determined to not contribute to the density of the object. If it
is determined at 1112 that a cube is entirely inside the volume
defined by the surface, the cube is determined to contribute to
the total mass of the object a mass equal to the volume of the
cube times the average density of the cube at 1114. Whether
the cube is entirely inside the volume defined by the surface
may be determined by comparing the voxels ofthe vertexes of
the cube with a density input threshold. For example, when all
the voxels of the vertexes of a cube are below the threshold,
the cube may be determined to be entirely inside the volume
defined by the surface. If it is determined at 1116 that a cube
is crossed by the surface, the cube is determined at 1118 to
contribute to the total mass of the object a mass equal to a
number of smaller cubes determined to be inside the volume
times an average density of the smaller cubes determined to
be inside the volume, as discussed in more detail elsewhere
herein. Whether the cube is crossed by the surface may be
determined by comparing the voxels of the vertexes of the
cube with a density input threshold. For example, when some
of'the voxels of the vertexes of a cube are below the threshold
and some of the voxels of the vertexes of the cube are above
the threshold, the cube may be determined to be crossed by
the surface. At 1120, the contributions of the cubes to the mass
of the object are added together. In some embodiments, the
contribution may be multiplied by a scaling factor to deter-
mine the mass of the object.

FIG. 12 illustrates an example of a method 1200 of provid-
ing a pseudo three-dimension image of an object together
with an estimate of the mass of the object. The embodiment of
a method 1200 of FIG. 12 may be performed, for example,
using an embodiment of the system 500 of FIG. 5. At 1202, a
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patent or other object is examined using a technique which
generates density information, such as a CT, CAT, MRI or
PET scan. At 1204, an output of the scan is produced, for
example in a .dem (DICOM) file format. Other file formats
may be employed, including hdr/.img (Analyze 7.5
format); .nii (NIfTT format); .PAR/ REC (Philips); .ima (Di-
com-like); etc. These files may be produced directly by a
scanning machine. The formats may save one file per slice,
may save all the data regarding a scan in a single file, may
divide a dataset into files related to the type of information
stored (e.g., header information in one file and raw data in
another), etc.

At 1206, optional pre-processing of the data file or files is
performed, such as changing of the file formats, segmentation
of the files, receiving user input, etc., and various combina-
tions thereof. The pre-processing may be based at least in part
onuser input. For example, user input may be provided to set
and/or to adjust the threshold. At 1208, the mass of the object
is determined, for example by using the method 1100 of FIG.
11. At 1210 the mass of the object is provided. At 1212 a
rendering of the object is provided, for example based on a
marching cubes algorithm. Other and/or additional image
rendering methods may be employed in some embodiments
(e.g., a modified MC algorithm as disclosed herein may be
employed to determine the mass, and a volume-based render-
ing method may be employed to render an image). At 1214,
the results are evaluated. The evaluation may include auto-
mated and manual evaluations of the data, as well as combi-
nations thereof. For example, masses below and/or above a
threshold may be automatically disregarded, may automati-
cally trigger an alarm, etc.

Example embodiments in the field of medical diagnostics
are discussed below. In the described embodiments, further
modifications are made to the MC methods. Some embodi-
ments of the modified MC methods may also determine the
mass of an object employing the methods disclosed herein,
and the modified methods may be employed in non-medical
applications.

Medical data sets generated, for example, by scanners are
generally comprised of a set of slices, each of which is a
gray-scale image. The grey-level of a voxel is generally pro-
portional to a density of that portion of the space associated
with the voxel. Thus, the datasets may be viewed as a density
map of a portion of the space, comprising a flow of density
values translated into a grey-level to facilitate viewing the
datasets on a screen. Since MC builds a surface mesh, which
can be considered a volume boundary. As discussed above,
the inventors have realized it is possible to determine the mass
of an object by modifying the MC algorithm.

Embodiment of a Brain Extraction Tool (BET)

1.1 Simple Description of the Processing Pipeline

FIG. 13 illustrates an embodiment of a method of defining
a mesh based on a dataset, for example, an MRI dataset of an
image of a brain. An overview of an embodiment is first
discussed with reference to FIGS. 13 and 14, and then
examples of the steps are discussed in more detail. An MRI
dataset (for example, a dataset generated by a measurement
system such as the measurement system 502 of FIG. 5) is
received or retrieved at 1302. At 1304, an intensity histogram
over the dataset is calculated to find the lower and upper
bound of intensity for the image and a rough threshold to
distinguish brain/non-brain portions is computed based on
the two boundary values. For example, a minimum intensity
t, may be determined, a maximum intensity t,s may be deter-
mined, and a rough threshold t may be determined based on
the minimum t, and maximum tsg intensities.
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At 1306, the center of gravity (COG) of the 3-D head image
is found, together with a roughly estimated radius r of the
head in the image. The center of gravity COG may be esti-
mated based on the voxels with intensities between t and tog.
The intensities of the voxels may be used as weighting factors
for their positions. The radius r provides a rough estimate of
the brain and head size. A medium intensity t,, may be deter-
mined for all points lying within a sphere of radius r centered
on the center of gravity COG.

An initial sphere mesh is created inside of the brain and
tessellated with triangles at 1308. For example, an initial
sphere centered on the COG and having a radius r/2 may be
employed. As shown in FIG. 14, triangular tessellation of the
icosohedron may be performed. Each triangle may be subdi-
vided into four triangles. The process may be repeated until
the desired complexity is achieved.

At 1310, the mesh may be slowly deformed with one vertex
atatime, for example following a pre-set update rule, towards
to the edge of the brain, while keeping the surface well-spaced
and smooth. Each vertex’s distance from the center may be
adjusted to form as spherical a surface as desired. After the
deformation process is completed (e.g., after a selected num-
ber of iterations is completed, after an error criteria is satis-
fied, etc.), a tentative tessellated surface is defined for the
brain at 1312. At 1314, an optional self-intersection test is
applied. If a self-intersection appears in the outputs, the
deforming process may be repeated, for example with a more
strict smoothness constraint. If no intersection appears, the
tessellated mesh may be determined to be the mesh represent-
ing the image (and the volume) of the brain. The mesh deter-
mined to represent the image of the brain may be employed to
determine the mass of the object (e.g., using the modified MC
process discussed herein to sum the mass contribution of
cubes contained entirely within the tessellated mesh and the
contribution of cubes cut by the surface of the tessellated
mesh). The process may be applied to other objects, and
modified as appropriate based on the characteristics of the
objects (e.g., aninitial radius may be setto be less and/or more
than an expected radius of an object, such as a pipe or iron bar,
embedded in concrete; a default number of iterations may be
modified; etc.; and various combinations thereof).

FIG. 15 illustrates magnetic resonance head images with a
white line tracking the outline of the portion of the brain
through selected iterations of a tessellation process.

1.2 Initialization of 3-D Deformable Model According to an
Embodiment

1.2.1 Estimation of Basic Image and Brain Parameters

Based on the intensity histogram of the MRI dataset, a
minimum and maximum intensity are estimated by ignoring
the long tails of the two sides. For example, the minimum
intensity t, is the intensity below which lies 2% of the cumu-
lative histogram and the maximum intensity t, is the inten-
sity above which lies 98% of the cumulative histogram. The
two values are used to remove the unexpected high intensity
“outlier” voxels; for example, a DC spike from image recon-
struction, or arteries, which often appear much brighter than
the rest of the image. The threshold t may be determined, for
example, to be a value 10% of the distance between t, and to4
as follows:

1=1,40.1(tgg~15)

The threshold t may be selected in other manners, such as
based on user input, using a different percentage of the dis-
tance, etc., and various combinations thereof.

The rough brain region may estimated by including all the
vertexes with intensities above t and the COG is estimated
using all voxels inside the region with a standard weighted
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sum of positions. Then the radius of brain/head in the image
is roughly estimated making no distinction between the brain
or the head. All voxels with intensity greater than t are
counted, and a radius is found, taking into account voxel
volume, assuming a spherical brain. A median intensity t,, is
determined, for example by estimating all points within a
sphere of the estimated radius and centered on the estimated
COG.

1.2.2 Initialization of Surface Model

After locating the COG, the surface modeling is initialized
by surface tessellation using connected triangles. The initial-
ization starts with triangular tessellation of icosahedrons.
Each triangle is iteratively divided into four smaller triangles
(see F1G. 14), while adjusting each vertex to make the surface
as spherical as possible, until the desired complexity is
achieved. The spherical tessellated surface is initially cen-
tered on the COG; the radius is set to half of the estimated
brain/head radius. To make incremental and small adjust-
ments, the vertex positions may not be constrained to the
voxel grid points, and may be real and floating positions.
Interpolation may be employed to determine grayscale values
to associate with vertex positions.

1.3 Deformable Rules for Tessellated Surface

1.3.1 Basic Vectors

To achieve a well-formed and smooth surface of brain,
each vertex may be moved to a place estimated by update
rules. The update may typically comprise many iterations and
the adjustment of each pixel in each iteration may be very
small, compared to the distance between neighboring verti-
ces. In each iteration, a small movement vector u is deter-
mined for each vertex and applied. A well-formed surface
may typically be achieved in 1000 iterations in an embodi-
ment.

In an update step, a tuple of neighboring vertex are consid-
ered: the operating vertex and its neighboring vertex. The
local surface normal f is calculated by taking the product
vector of the tuple of vectors and scaling to unity. FIG. 18
illustrates five pairs 1802 of vectors from the central vertex to
consecutive neighboring vertices.

The next step of an iteration is to calculate the mean posi-
tion of all vertices neighboring the vertex in question. This is
used to find a difference vector s, the vector that takes the
current vertex to the mean position of its neighbors. This
vector may be minimized for all vertices (by positional
updates), which facilitates producing a smooth surface hav-
ing equally-spaced vertexes. Also, due to the fact that the
surface is closed, the surface may gradually shrink. Then, s is
decomposed into orthogonal components, normal s,, and tan-
gential s, to thelocal surface, as shown in FIG. 19. The normal
s,, and tangential s, components may be determined as fol-
lows:

M
@

$,=5—8,
S, =(s)A

1.3.2 Update Components

Based on the two orthogonal components s,, and s,, the
update rule may be represented by 3 update components.

The first update component u, represents movement within
the local surface, and facilitates keeping the vertices in the
surface substantially equally spaced. Therefore, u, is only
dependent on s,. To achieve small and stable updates in every
iteration, u, may be a rescaled value of s, which may be

simply multiplied by a weighting factor, such as V5.
u=s,/2 ©)

Then, in each update iteration, the vertex tend to be placed
with an equal distance in the surface.
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The second component u, moves the vertex along the local
surface normal, which is to adjust the current vertex in line
with its neighboring vertex to enhance the smoothness of the
surface. Thus, u, may be derived from s,, multiplied by a
weighting factor f,.

Q)

For simplicity, f, can be set as a constant fraction like the
case in the first update component. However, the real situation
might be more complex. To avoid an undesired high curvature
in the final model, an embodiment may over-weight the
smoothing factor f, to the update component which assures a
stable and smooth surface of the brain or other object of
interest. The consequence of the emphasis on eliminating of
high curvature may lead to an over-smoothed surface, in
which the curvature is underestimated in some parts (the low
curvature parts), e.g., “cutting of corners”. In an embodiment,
an improvement is to use a nonlinear equation for u,, which
smoothes high curvature in the surface model with a weak
effect and low curvature with a strong effect. To explore a
nonlinear function, the local radius of curvature r is deter-
mined, with:

Uy,

12 )

r=—-—
2sal

Where 1 is the mean distance from a vertex to its neighbor
across the whole surface. The relationship between local
radius of curvature r, vertex spacing 1 and the perpendicular
component of the difference vector Is,,| is illustrated in FIG.
20.

Now, the update function can be presented as a sigmoind
function:

Fo=(1+tan AF*(1/r-E)))/2 (6)

Where E and F control the scale and offset of the sigmoid.
A minimumradiusr, ., and maximumradiusr, _ofcurvature

is set: below the smoothing is heavy; whereas abover, _the

smoothing is light. This facilitates removing highly curved
features while keeping the corners with low curvature. The
value of'r,,,,, and r,, ., may be derived from empirical values
(e.g., 1,,;,=3.33 mm and r,,,,=10 mm) suited for typical
geometries found in human brain. Other values for r,,,,, and
I,,. may be selected for typical geometries of other objects of

interest. Thus, E and F may be set as:

E=(1/#3,+ /7,012 @)

F=6/(1/%;,~1/¥ ) (8)

The third component u, deforms the surface model fit to the
real brain surface.

First, along a line pointing inward from the current vertex,
the minimum and maximum intensities are found:

1, =MAX(t,, MIN(z,,,,(1(0),[(1), . . . , I(d})))) (©)]

1,0 =MIN(t, MAX(1,(1(0),(1), . . . , I(d>))))

Where d, and d, determine respectively how far into the
brain to search for the minimum and maximum intensity. For
a human brain image, d, and d, may typically be set as d, =20
mm and d,=d,/2, and may be empirically optimized. The
selected values reflect the relatively larger spatial reliability
of'the search for maximum intensity compared with the mini-
mum. Thresholdst,,.t, and tare used to limit the effect of very
bright or very dark voxels. Since intensities are described as
floating in an MRI image dataset, nearest neighbor interpo-

(10)
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lation of intensity may be employed, which may be optimal
compared to trilinear or higher order interpolations.

Now, a locally appropriate intensity threshold is used to
distinguish between brain and background:

1= L= 12)* bt

an

The threshold t, lies a determined fraction of the way
between the global robust low intensity threshold t, and the
local maximum intensity I,,,,, according to fractional con-
stant b,. This constant is a parameter that a brain extraction
algorithm may receive as an input. A default value of 0.5 has
been found to give excellent results for most input brain
images. For certain image intensity distributions it may be
varied (for example, in the range 0-1) to give optimal results.
The necessity for this is rare, and for an MRI sequence that
benefits from changing b,, one value normally works well for
all other images taken with the same sequence. A third frac-
tion is calculated as:

_ 2in —11)

12
fi= 4

Inax — 12

The constant 2 is used to control the value of f; in the range
of-1to 1.1f1,,,, is lower than t,, it gives a negative value for
f; and causes the surface to move inward at a current point;
otherwise, the surface moves outward.

Meanwhile, the balance between the smoothness term and
the intensity-based term may be found by simply multiplying
another empirical factor 0.05f;1, where the 1 represents the
mean intensity-based inter vertex distance. Then, the third
update component is:

4;=0.051,15, a3)

From the above discussion, each components may be pre-
sented with appropriate weights before the two orthogonal
components s, and s,, given appropriate weights for each
components, the components are combined and generate the
update vector u:

4=0.55,+/35,+0.05£315,, (14)

1.4 Smoothness Increase

To increase the smoothness of the resulting sphere mesh,
intersection checking may be employed. One option is to
check for intersections after each iteration, for example by
comparing the position of each vertex with that of every other
vertex. This, however, may be computationally expensive.
Another option is to perform the algorithm, and then perform
a self-intersection check. If the surface is found to self-inter-
sect, the algorithm may be re-run with, for example, higher
constraints for the first 75% of the iterations. The remaining
iterations are run with lower constraints (e.g., dropping down
to the original level over the iterations). The checking for
self-intersections and the re-running when a self-intersection
is detected may be repeated until there is no self-intersection
detected or some other error criteria is satisfied. It is noted that
self-intersections were rarely detected. Thus, an embodiment
may omit self-intersection checking.

In an embodiment, an estimate of the exterior skull surface
may be provided. A search outward from the brain surface
along a line perpendicular to the local surface is conducted. A
maximum intensity and its position on the line are recorded,
as well as a minimum intensity on the line. The search may be
limited, for example, to a distance of 30 mm. If the maximum
intensity is not greater than the threshold t, the search at this
portion of the local surface may be discontinued, as this may
be an indication of a signal loss at an image extreme, for

10

15

20

25

30

35

40

45

50

55

60

65

22

example at the top of the head. A point at a greatest distance
from the brain surface which has low intensity and which
maximizes d/30-1(d)/(t,5—t,) is identified. From the identi-
fied point, a search outward is conducted to the location of the
maximum intensity. The point at which a first maximum
intensity gradient is found is the estimated position of the
exterior surface of the skull. The resulting set of points as the
process is continued for additional local surfaces of the brain
surface should be close to the exterior surface of the skull.
FIG. 21 illustrates examples estimates of the exterior surface
of a skull.

Sometimes the brain center of gravity COG differs from
the scan center of gravity. This may indicate the brain extrac-
tion tool has included unwanted tissues. For example, the
scan field of view may be large enough to capture the whole
head and some of the neck. A recursive algorithm may be
employed in an embodiment to address this issue. The head
image H is re-sliced into the axial plane. The COG coordi-
nates X of H are set to a starting value x,. The head image H
is segmented with the COG equal to x. The brain may be
segmented, for example based on user input, selection of one
or more density threshold, application of the brain extraction
algorithm, etc., and various combinations thereof. This pro-
duces an extracted brain B. The coordinates of the COG x' of
the extracted brain B are determined and compared to the
previous COG x. If an error criteria is satisfied, B is set as the
segmentation. For example, ifa Fuclidean distance between x
and x' is less than half the diagonal of an image voxel, the
algorithm may terminate and B may be set as the brain seg-
mentation. Otherwise, X is set equal to X' and the segmentation
process is repeated. FIG. 22 illustrates application of the
segmentation routine to an image, with an initial image on the
left and a final segmentation on the right. The process may be
further enhanced to reduce intensity inhomogeneity. See
Sled, et al., “A nonparametric method for automatic correc-
tion of intensity non-uniformity in MRI data,” IEEE Trans-
actions of Medical Imaging 17, 1, 87-97 (1998).

FIG. 23 illustrates a comparison of the brain extraction tool
of an embodiment to other brain extraction algorithms to
process standard 256%256 medical datasets, such as Statisti-
cal Parameter Mapping (“SPM”), Minneapolis Consensus
Strip (“McStripe”), Brain Surface Extractor, Subject Specific
(“BSE”), and BSE, fixed. The embodiment of the brain
extraction tool does not need pre-registration, and has a rela-
tively high accuracy and speed, as shown in FIG. 23. As noted
above, the brain extraction tool may be enhanced using image
enhancement techniques, such as intensity inhomogeneity
correction algorithms.

FIG. 24 illustrates an image of a brain on a mobile device
according to an embodiment.

In magnetic resonance imaging (MRI), accuracy of brain
structures quantification may be affected by the partial vol-
ume (PV) effect. PV is due to the limited spatial resolution of
MRI compared to the size of anatomical structures. When
considering the cortex, measurements can be even more dif-
ficult as it spans only a few voxels. In tight sulci areas, where
the two banks of the cortex are in contact, voxels may be
misclassified. We propose a new PV classification-estimation
method which integrates a mechanism for correcting sulci
delineation using topology preserving operators after a maxi-
mum a posteriori classification. Additionally, we improved
the estimation of mixed voxels fractional content by adap-
tively estimating pure tissue intensity. Accuracy and preci-
sion were assessed using simulated and real MR data and
comparison with other existing approaches demonstrated the
benefits of our method. Significant improvements in GM
classification were brought by the topology correction. The
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root mean squared error diminished by 6.3% (p<0.01) on
simulated data. The reproducibility error decreased by 9.6%
(p<0.001) and the similarity measure (Jaccard) increased by
3.4% on real data. Furthermore, compared with manually-
guided expert segmentations the similarity measure was
improved by 12.0% (p<0.001).

In magnetic resonance imaging (MRI), accuracy of brain
structures quantification may be affected by the partial vol-
ume (PV) effect. PV is due to the limited spatial resolution of
MRI compared to the size of anatomical structures. When
considering the cortex, measurements can be even more dif-
ficult as it spans only a few voxels. In tight sulci areas, where
the two banks of the cortex are in contact, voxels may be
misclassified. The inventors propose a new PV classification-
estimation method which integrates a mechanism for correct-
ing sulci delineation using topology preserving operators
after a maximum a posteriori classification. Additionally, the
inventors improved the estimation of mixed voxels fractional
content by adaptively estimating pure tissue intensity. Accu-
racy and precision were assessed using simulated and real
MR data and comparison with other existing approaches
demonstrated the benefits of an embodiment of the BET
method. Significant improvements in GM classification were
brought by the topology correction. The root mean squared
error diminished by 6.3% (p<0.01) on simulated data. The
reproducibility error decreased by 9.6% (p<0.001) and the
similarity measure (Jaccard) increased by 3.4% on real data.
Furthermore, compared with manually-guided expert seg-
mentations the similarity measure was improved by 12.0%
(p<0.001).

An embodiment of this disclosure is directed to possible
diagnosis techniques of osteoporosis, a disease that leads to
bone mass loss, which affects particularly older people. The
discussion herein focuses on femurs, but other embodiments
may focus on other bones and/or non-medical uses.

In conventional analysis of the medical examinations to
detect bone loss for the most part the post-processing work is
performed manually and is complex and time consuming. In
particular, segmentation to separate the soft tissues of the leg
from the bone is complex and time consuming. The operator
proceeds slice by slice and eliminates voxels not belonging to
the bone. The complexity resides especially in finding the
border of the bone, taking into account a certain quantity of
noise present in an image and a certain number of “uncertain”
voxels, when the operator has a doubt about its nature.

This job is extremely complicated due to the definition of
the examinations. For example, a CT may typically have 1126
slices, with each slice having a definition of 512x512 voxels.
An embodiment at least partially automates this process.

The second phase of this post-processing work-flow is to
build a polygonal mesh that reflects, as much as possible, the
shape of the external bone. This step may be executed resort-
ing to both manual and automatic contributions, in order the
improve the topology usefulness of the mesh itself, and in
particular the absence of holes.

This disclosure relates to of a set of tools and algorithms to
facilitate automating segmentation, producing as output
results comparable with the results obtained conventionally.

Moreover, new and innovative steps are disclosed inside
this tool-chain, integrated inside the flow, and example con-
tributions in terms of helping the medical staff make a diag-
nosis are discussed herein.

In an embodiment, a femur extraction tool (“FET”)
receives as input a dataset obtained by a density medical scan
(typically CT, MRI, etc.) in which the whole leg is present.
The FET automatically separates the soft tissues and the
bone, eliminating voxels belonging to the soft tissues.
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Optionally, the bone may be further segmented in order to
isolate the voxels that belong to an external mesh and the
voxels that will form an internal mesh (e.g., into an external
and an internal set of triangles).

The use of Marching Cubes facilitates building the separate
meshes. For example, MC facilitates building a set of meshes
one inside the other, like an onion. This facilitates dividing
those meshes and choosing the desired mesh or meshes to
visualize.

Inaddition, and as discussed above, during the execution of
the Marching Cubes algorithm, the mass of the object lying
inside the mesh (or between meshes) may be computed. This
is an extremely useful tool for helping the diagnosis of the
osteoporosis, since one of the first signals of this disease is a
decrease of bone mass.

The FET may be viewed as a variation of the brain extrac-
tion tool (BET) discussed herein. Thus, the inventors consid-
ered some differences between the characteristics of bones
and the characteristics of human brains. FIGS. 38 and 39
illustrate femur and brain images. The human brain typically
is a sphere-like object with complex channels in the surface,
while the human femur is typically a stick-like object with a
protruding head and relatively flat body. The typical structure
of the femur is an interior of loosely organized trabecular
bone and a superficial shell of compact cortical bone. In a
brain MRI, the gradient of intensity is generally contiguous
from a brighter inside region to a darker surface (with the
gray-scalerepresenting density). FIG. 31 illustrates images of
human femurs. The interior and superficial bones may have
similar intensities in some places, interior bone structures
may have similar intensities to as cortical bones, and, in
osteoporosis and fracture areas, holes may scatter over the
bone indicating very low intensities compared to the superfi-
cial shell. The inventors recognized the differences and modi-
fied an embodiment of the BET to apply to femur segmenta-
tion. For example, the inventors recognized that pre-
processing of BET image data to reduce intensity
inhomogeneity and to fill holes may produce better results.
An embodiment of an FET is discussed in more detail below.
An Embodiment of a FET (Femur Extraction Tool)

The inventors analyzed the issues encountered by a human
user manually segmenting bone image data, in particular the
complexity and the length. An embodiment at least partially
addresses both these issues, obtaining a result comparable
with the human output in a reduced time span.

An embodiment modifies brain extraction algorithms, such
as the BET discussed herein and those discussed in S. M.
Smith, Fast Robust Automated Brain Extraction, Human
brain mapping,Vol. 17,No. 3, pp. 143-155 (November 2002),
based on the inventors’ recognition of the differences
between brain and bone images and to facilitate the diagnosis
of osteoporosis.

An embodiment of an FET is the result of the adaptation of
an embodiment of the similar BET in order to be applicable
onhuman bones and on femurs in particular. The input may be
a density file (e.g., .ply format, etc.). The FET starts from a
simple deformable model that grows and shrinks in order to
catch the borders of the bone and discard the voxels of soft
tissues or whatever not belonging to the structure of the hard
bone. Starting from an initial mesh, the FET may be executed
iteratively, using the output of the previous iteration as input
for the following one, in order to improve the shape of the
resulting mesh and trying to letting the FET converge to an
output. The output of an FET of an embodiment are basically
two: the mesh of the model modified and as close as possible
oras desired to the border of the bone (e.g., satistying an error



US 9,147,239 B2

25

criteria), and a binary mask to be applied on the original
dataset to decide which voxels should be discarded and which
ones to be preserved.

FIG. 25 illustrates an embodiment of a method 2500 of a
femur extraction tool. At 2502, input data is received or
retrieved, for example, an MRI image dataset is received. At
2504, pre-processing is performed before segmentation to
address the low intensities of trabecular bones (which facili-
tates determining a global threshold for segmentation), and to
file holes inside the interior (which facilitates identifying the
bone surface). A minimum and a maximum intensity of the
dataset is determined and a density threshold is determined
based on the two intensities. The image is binarized using the
determined density threshold and 3-D dilation is performed.
The geometric center of the 3-D femur image is determined,
together with a rough estimated radius of an equivalent cyl-
inder representing the femur. An initial cylinder-like mesh
with hemispherical caps is created inside of the femur and
tessellated with triangles. At 2506, the mesh is slowly
deformed, in a way similar to the BET embodiments dis-
cussed herein, with modifications of the update rules, such as
the modification discussed below. When the deformation is
complete, a temporary mesh is created representing the sur-
face of the femur. The mesh is reused as an initial mesh of the
deformable model and the modified BET at 2506 is repeated,
until a convergence is reached when comparing the tempo-
rary mesh with the mesh obtained from the previous iteration,
for example, in terms of Hausdorft Distance. Other error
criteria, such as other comparison criteria, may be employed.
The converged mesh is used to create a 3-D mask. At 2508, the
mask is applied to the original MRI dataset with a simple
selection/rejection rule to recover the 3-D shape of femur. The
result is a Femur surface mesh.

FIG. 26 illustrates application of an embodiment of an FET
with respect to a single slice of an MRI image. The left side of
FIG. 26 shows a CT slice taken from a leg and the right side
shows an example output of the FET, which has eliminated
soft tissues, preserving the bone, which is the central body
already visible in the first picture.

As previously discussed, one characteristic of MC, which
may be used to create the refined mesh, is facilitating the
creation of a mesh comprised of a set of surfaces, one inside
the other, similar to an onion. For example, it may be desirable
to visualize a structure to analyze the distance between the
two surfaces (this could be particularly useful handling a
brain). In general, it may be desirable to model the interaction
between the various tissues and organs inside our body, visu-
alizing, sectioning and in general managing them together. In
other applications, it may be desirable to split and select all
the possible layers present in the visualized image. FIG. 43
illustrates images produced by a MC algorithm. The left
image is a MC image generated from a data set which was not
pre-processed, in which the onion-like character of the image
is shown. The right image shows a MC image generated from
apre-processed data set. The preprocessing may lead to better
results as it allows for a simpler structure having fewer tri-
angles to be generated.

Marching Cubes may produce an extreme large number of
two-dimensional shapes (e.g., triangles), depending on the
quality of the dataset. Decreasing the number of triangles
produced, such as by simply eliminating the portion of the
mesh which is not of interest, may result in increases in terms
of computational speed of any kind of topology checker, the
frame-rate of the visualized image, etc.

Another reason to segment an object of interest is the
possibility to compare the mesh produced by MC with a mesh
of the same object produced starting from the same input
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dataset and a different method. If this last method already
tends to visualize a single surface, it may be desirable to
uniform the two mesh shapes, since the metric used to com-
pare two meshes may be, for example, a Hausdorff Distance
(“HD”). HD may be evaluated in the following way: for every
point of mesh A, it is computed the smallest distance for mesh
B; then the final HD is the biggest of the computed smallest
distances.

Given this definition, the presence in a mesh of triangles
that represent a shape absent in the second mesh, may influ-
ence a result of this comparison (both negatively or posi-
tively).

In an embodiment, the dataset is divided into the basic
cubes characteristic of the Marching Cubes algorithm. Then,
according to the threshold chosen to visualize the related
iso-surface, the FET divides the cubes into three categories,
according to the eight corner voxels’ values. The cubes with
eight voxels below the threshold, eight voxels above the
threshold and cubes a mix of voxels above and below the
threshold.

Using a mask, the voxels belonging to cubes in which the
threshold is crossed are preserved, while the voxels not
involved in this computation are modified: for example, the
other voxels are zeroed if below the threshold and brought to
the maximum value allowed by the bit definition if above the
threshold.

Of course some of those voxels belong to more than one
cube, so it can happen that some voxels belong to different
types of cube. In this case, the voxels for cubes crossed by the
threshold are preserved.

FIGS. 27A and 27B show the voxels before and after
application of the mask in an embodiment. After the mask is
applied the dataset comprises three types of voxels: the black
ones (having a value equal to 0), the white ones (with a value
equal to the maximum allowed by the bit definition) and all
the others, remained equal with respect to the original dataset.

In order to divide the external mesh from the internal ones,
an external border of the object is identified. This border may
simply be the barrier comprising the white voxels that divide
the unchanged external elements from the internal ones. The
first set of elements will contribute to the building of the
external mesh, as internal ones will do the same for the
internal surface.

Inthis phase it may be desirable to facilitate that the border
does not contain holes, in such a way that internal and external
unchanged voxels enter in contact. This may be a challenging
step. A clear demarcation line is useful to extrapolate the
mesh. The Challenge results because unfortunately such
holes may be quite large, and it is desirable to fill the holes
without building (too many) artifacts and, without human
intervention.

With reference to FIGS. 27A and 27B, an example of a
slice after the first step of the algorithm: the white voxels
represent the barrier between internal and external voxel
involved by MC computation. In this case there are no holes
to fill. To visualize the external mesh the voxels inside the
border described above are set to white, obtaining the image
of FIG. 27B. In FIG. 27A is a slice of a scan of the whole leg.
It is evident the presence of the bone since it is the most dense
part in the scan. FIG. 27B shows an example output, after the
application of a binary mask that has decided which voxels to
preserve and which to discard. It is possible to modify the
dataset in order to visualize just the external mesh, as in FIG.
27B, or an internal mesh, and to compare the two visualiza-
tions. The initial mesh selection process improves the output
of'the MC algorithm.
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Mesh Creation Through Marching Cubes

One of the valuable characteristics of the tri-dimensional
medical exams is the possibility to have a global view of the
object in 3D space.

There are many methods and algorithms through whichitis
possible to obtain a tridimensional model. Some of the meth-
ods have the purpose to visualize the volume of the object: in
that case it is possible to section the object in order to look
inside and inspect it slice by slice, following the three direc-
tions or even diagonally. Typically this kind of visualization is
done resorting to texture based algorithms, that exploit the
GPU parallelization without performing any type of post-
processing on the images obtained by CT or MRI scans.

The approach of an embodiment is quite different, and
facilitates visualize an object, obtaining better quality images
through noise elimination, adjustment of the borders and
other types of post-processing. An embodiment employs a
modified MC to perform a rough segmentation, allowing the
visualization of a certain number of surfaces using the same
dataset, in such a way that itis possible to visualize separately
different tissues. As previously discussed herein, MC may
receive as input a dataset, a scalar field encoded as a stream of
voxels, each voxel bound to a point in 3D space. Each voxel
contains density information, sampled at the coordinates of
the voxel. Since this value is scalar it is possible to translate a
dataset into a greyscale image. A threshold is employed to
visualize a surface comprising points having the threshold
value. The dataset is divided into small cubes, each cube
having a voxel associated with each of its vertexes. Given this
description, there are two kind of cubes: the first where all the
eight voxel values are below or above the threshold, and the
second where there is a mix of them. Cubes having voxel
values above and below the threshold are assumed to be
crossed by the surface to visualize. At this point it is sufficient
to trilinearly interpolate the spatial coordinates of the points
through which the surface is more likely to pass, in order to
build a reasonable set of triangles inside that cube having the
role to model that part of surface in the best way possible. As
discussed above, one or more look-up tables may be
employed, as well as the improvements to the basic MC
discussed herein. See, e.g., the Chernyaev, Lewiner and Glan-
znig references previously discussed, as well as the other
modifications in the discussion of the BET herein. For an
embodiment of a FET, it may be really useful to visualize two
surfaces having different densities, present in the same
dataset and not superimposed. FIG. 44 illustrates images
generated using locally adaptive threshold values, with the
different colors corresponding to threshold values.

The inventors implemented a linear version of a locally
modified threshold in an embodiment of an FET, which was
really useful in managing some datasets of bones inserted in
cement blocks, allowing the contemporary visualization of
the top and the bottom of the bone without the block. See
FIGS. 28 and 29, which illustrate two images obtained using
Marching Cubes algorithm on bone datasets. The different
colors indicate the threshold shift along a vertical direction in
a locally adaptive variant of the FET.

Computing the Mass of an Object

Starting from MC in an embodiment a method is provided
which facilitates computing the mass (volume times density)
of'the object of our medical examination, or of a portion of it.
As previously discussed, MC is a surface-rendering algo-
rithm to build a mesh, composed by triangles. Those triangles
form the boundary of a volume. Density values are already
available, since the voxel values contained in a dataset of an
embodiment are expressed in Hounsfield Units, which are a
density scale used for those types of medical scans. In an
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embodiment, estimation of the mass of an object is inserted
into the MC, to exploit the MC’s strong parallelizability. In
this way the total mass to compute will be equal to the sum-
mation of the contribution given by each basic cube. For
example, an embodiment of the method of computing the
mass of an object discussed above may be employed (e.g.,
computing the summation of contributions from basic cubes
inside the surface of the object and from contributions of
basic cubes crossing the surface of the object). This compu-
tation, as already mentioned, could be made for the entire
surface or for just a portion of it.

Computing the mass of an object, or a portion of an object,
may have a high value in an embodiment used, for example,
to diagnosis osteoporosis. Considerable losses of the mass of
the bone with respect to the normal human average could
represents a good signal in detecting this disease. FIG. 30
illustrates an image with a red region of interest. FIG. 44
illustrates images with other red regions of interest. For
example, regions in which it is desired to estimate the density,
for example as part of a diagnostic procedure.

Embodiment of Femur Extraction Tool

An embodiment of a Femur Extraction Tool (FET)
addresses the problem of automatic segmentation of femur in
MRI datasets using deformable models. A pre-processing of
binarization and 3-D dilation is used to reduce the intensity
inhomogeneity followed by an appropriate deformable rules
derived from an embodiment of a Brain Extraction Tool
(BET).

FET System Flow
Characteristic of Femur MRI and Overview of FET

In femur segmentation, the main issues encountered so far
are the great variation in the bone intensity in MRI. The
normal structure of the femur is an interior of more loosely
organized trabecular bone and a cortical shell of compact
cortical bone. In MRI, the superficial part of femur appears
much more brighter than the interior part. The problem may
be even more complex because the interior and superficial
kinds may have similar intensity in some parts. Likewise, it is
possible to find interior bone structures which exhibit the
same intensity as the cortical bone. Moreover, in the MRI
with osteoporosis and fracture areas, some holes may scatter
over the bone indicating very low intensity compared to the
superficial shell. FIG. 31 illustrates intensity issues in bone
images, from left to right illustrate: the bright part in a trabe-
cular bone, the dark part in cortical shell and a hole in inside
bone.

Therefore, in an FET embodiment, a pre-process is per-
formed before segmentation using MC. A minimum and
maximum intensity of the dataset are identified and a thresh-
old is determined based on the two intensities. The image is
binarized using the threshold followed by a 3-D dilation. The
geometry center of the 3-D femur image is found, together
with the roughly estimated radius of the equivalent cylinder
representing the femur. An initial cylinder-like mesh with
hemispherical caps is created inside of the femur and tessel-
lated with triangles. The mesh may be slowly deformed much
like BET embodiment discussed herein with modifications of
the update rules. The vertex generated after the modified BET
are used to create a 3D mask and the mask is applied to the
original MRI dataset with a simple selection/rejection rule to
recover the 3D shape of femur.

FIG. 47 illustrates an embodiment of a method 4700 of a
FET. An embodiment of the system 500 of FIG. 5§ may be
employed to perform all or part of the method 4700 of FIG.
47. At 4702, a dataset is received or retrieved. At 4704, mini-
mum t,,,, and maximum t,,,, intensities in the data set are
identified. At 4706, a binarization threshold t is determined
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based on the identified minimum t,,, and maximum t,,,,
intensities. For example, the binarization threshold t may be
determined as follows:

151,55+ 0.08(L =)

A factor other than 0.08 may be employed.

At 4708, the image is binarized. When the voxel intensity
is greater than t, the voxel is set equal to t,,,. at 4714. When
the voxel intensity is less than t, the voxel is set equal to t,,,,,
at 4710. At 4712, 3-D dilation is performed, for example
using a three-by-three-by-three kernel.

At 4716, a segmentation threshold th is set. For example,
the segmentation threshold may be set to t,,,. At 4718 a
geometric center and radius for a volume cylinder represent-
ing the binarized image are determined. At 4720, tessellation
of'the surface is initialized. At 4722, iterative updating of the
tessellated surface occurs. At 4724, an updated tessellated
surface is produced. FIG. 41 illustrates an embodiment of a
tessellated surface at various times during an iterative tessel-
lation process. At 4726, optional checking of the produced
tessellated surface is performed, for example, a self-intersec-
tion test may be performed. If the self-intersection test is not
passed, the method returns to 4722 and iteratively updates the
tessellated surface. If the self-intersection test is passed, the
method proceeds to 4728, where a 3-D mask of the femur is
created. At 4730, the mask is applied to the dataset to produce
data for use in producing the femur image. Techniques that
may be employed in embodiments to implement the blocks
shown in FIG. 47 are discussed in more detail below.
Pre-Processing for Femur MRI

As discussed above, femur intensity is not homogeneous in
MRI due to differences in cortical and trabecular bones. The
bright region in interior bone and dark region in superficial
shell can make the BET algorithm which based on a global
threshold plus a well-defined local threshold fails to find the
femur surface. Moreover, for most of femur MRIs, there exist
some regions with very low intensity similar to the back-
ground appearing as dark holes inside the femur. These holes
may make the iterative updates to the surface in a deformable
model behave in an unexpected way. Therefore, a pre-pro-
cessing of original MRI is performed before deformable
model based segmentation.

Binarization

A simple way to reduce inhomogeneity is to binarize the
original image. First, the global maximum intensity t,,,, and
minimum intensity t,,,, are determined by scanning the 3-D
volume. Then the threshold t is determined based on the two
intensities. If a high threshold is used to find the clear bound-
ary between femur and background, some dark part of corti-
cal shell is removed while the inside holes also expand; if a
low threshold is used to eliminate the inside holes and keep
the cortical shell, some background voxels are also included.
Therefore, t may be chosen as an experimentally optimal
value given by the following equation:

=t F 008Xt i) (15)

Binarization is performed using t, the vertex with intensity
larger than t is recognized as femur and set to t,,,,; the vertex
with intensity lower than t is recognized as background and
setto t,,,.. The binarized image keep a clear surface of femur
but still leaves some inner holes with partial shrinkage effects.
3-D Dilation

From the discussion before, any remaining dark holes may
affect the performance of deformable model based segmen-
tation. Therefore, a 3-D dilation may be employed following
the binarization.
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Let A and B be sets in Z, (B), denote the translation of B by
x and B denote the reflection of B with respect to its origin.
Based on Minkowski operators, dilation is defined as:

A@B:{x:(B)XﬂA¢¢}:UAX (16)

xeB

From the above definition, the dilation operator takes two
pieces of data as inputs. The first element A is the image
which is to be dilated. The second element B is commonly
known as a structuring element (also known as a kernel). It is
this structuring element that determines the precise effect of
the dilation on the input image.

Dilation may be described simply in terms of adding
n-voxels in the binary image, according to certain rules which
depend on the pattern of the neighboring n-voxels and the size
and shape of the structuring element. Therefore, dilation is a
process that elongates the interior of the object. This effect
may be applied to femur MRI, which is a 3-D image volume,
to fill any dark holes left by binarization. Correspondingly,
the 3-D dilation is defined as:

A@®B = max (Ax+i,y+j,z+k)

17
(i.jk)EB an

Now the image is 3-D (e.g., a sequence of slices of bina-
rized femur MRI) and the structuring element is now 3-D. The
structuring element may be chosen to eliminate the sparse
holes while keeping a clear contour of the femur surface as
shown in FIG. 32. The structuring element is placed on the
first pixel of the first slice and the output is set to the maximum
value lying within the structuring element. The structuring
element is then moved across the current slice until the entire
slice has been processed. Then the next slice is done in exactly
the same way. The process is repeated until all the frames have
been processed. The structuring element in the 3-D dilation of
FIG. 32 takes five vertexes from the current slice as well as the
vertex from the previous and next slices. FIG. 33 illustrates
images to which 3-D dilation has been applied. The femur
surface is not blurred too much because that the structuring
element is designed to fit to the intrinsic smoothness of femur
surface. To achieve this, a compromise is made that a small
dark area is left round the geometry center of the femur.
However, a dark region entirely inside the pre-processed
image data does not generally lead to unpredictable behavior
of a MC segmentation. With reference to FIG. 33, the left-
most image is a binary 3-D image after dilation with a struc-
turing element. The following 3 images are slice views of the
same image, instead of scattering all over the trabecular bone,
the dark area is concentrated on the geometry center. FIG. 36
illustrates dilution with a kernel of seven, and FIG. 37 illus-
trates dilation with a kernel of three without pre-binarization.
Segmentation with Modified BET
Initialization of Deformable Model

Since the femur MRI has already been binarized before,
calculation of intensity histogram may be avoided. The
threshold th to separate femur from back ground may be set,
for example as t,,,,. The femur region may be roughly esti-
mated by including all the vertex with intensity above th.

Unlike the brain, the shape of femur is more like a cylinder
than sphere. The initial frame and end frame from femur head
and bottom may be manually located to estimate the height h
of'the cylinder. Based on h, the radius r of femur in the image
may be roughly estimated by using the voxel volume of femur
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by counting all the voxels with intensity greater than th. It is
avery rough estimation which may be used as a starting value
in the initialization of deformable model.

With regard to determining an initial center of the model, a
center of geometry may be estimated instead of center of
gravity. Here, COG is also used as an abbreviation of center of
geometry. Considering the femur has a “heavy” head, the
center of geometry may be estimated by finding the center of
gravity using all voxels inside the femur region with a stan-
dard weighted sum of positions and making a translation,
which is empirically set as 2h/3, along the vertical axis down
to the body.

After finding the center of geometry, height h and radius r,
the mesh is initialized as a sphere and the BET-like tessella-
tion is used to subdivide the mesh into triangles with equally
spaced vertex until the required complexity is achieved. The
tessellated mesh is then centered at the center of geometry and
the radius is set as r/1.2. As discussed before, the shape of
femur is far from a sphere and the quality of deformable
model based segmentation is affected by the initial shape. The
more similar the initial mesh to original shape of object, the
better results the method may be expected to produce. There-
fore, an adjustment may be made to the initial shape. Consid-
ering the fact that the surface of the body is less complicated
than the head, fewer voxels may be assigned to the body than
to the head. A simple way is to rescale the coordinators along
the vertical axis with an elongating factor h/r. The final shape
of initial model is a stick-like mesh with round caps on both
sides. An embodiment of an initial mesh of a deformable FET
model is shown in FIG. 34. As mentioned with reference to a
BET, to achieve precise adjustments in the iterations, the
vertex positions may be real and floating values.

A Modified BET Deformable Loop

After the pre-processing, the deformable rules of an
embodiment of femur segmentation are based on the same
procedure as described in BET.

As the basis of deformable rules, a couple of basic vectors
are found in the same way, say difference vector s pointing
from the central vertex to the mean position of its neighbors
and its orthogonal decompositions s, and s, s, is the tangential
vector to the local surface and s,, is the normal vector.

The first update componentu; may be designed the same as
in BET which takes the movement within the local surface to
keep surface vertex equally spaced. The first component may
be given by:

u,=s/2 (18)

The second update component also follows the same strat-
egy of BET which moves the vertex along the local surface
norm to increase the smoothness of the surface. The second
component may be given by:

U=, 19)

Where f, depends on the local curvature of the surface to
enforce a weak smoothing to high curvature part while a
strong smoothing to low curvature part to overcome the over-
smooth. In an embodiment, f, may be defined as:

Fo=(L+tan A(F*(1/r—E)))/2 (20)
E=(1/r,,,+1/r,, )2 1)
F=6/(1/r=1/F) (22)

In an embodiment, what is different from BET is that the
upper and lower bound for smoothness controlling, that is
I, and r,,... are modified to be suited for the geometries of
human femur. Therefore, a histogram of local curvature of
femur MRI is calculated. Based on the histogram is set
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as curvature value above which lies 5% of the cumulative
histogram andr,,,,, is set as the value below which lies 70% of
the cumulative value. For example, r,,,,,=5 mm and r,,,,,,=0.1
mm may be employed, which are derived from datasets of
different human femur MRI.

The third update component, like the third component of
the BET embodiment described herein, is also designed to act
along the local norm and to facilitate the vertex tracking the
femur surface. However, instead of finding two referential
intensities, a single average intensity may be determined in an
embodiment of an FET:

T=AVGIO)I(D), . . . J(d))

Where d determines the search area defined by the distance
from the deformable mesh surface pointing outward along the
norm, where all the vertex intensities are counted for the
calculation of average value. Here, d may be empirically
optimized, for example as 0.5 mm. Since the image has
already been binarized, I can vary from¢t,,, tot,,,, during the
update process. I is equal to t,_ when the current surface
vertice is tightly inside the femur that all the vertex in the
search area is inside the femur; according, T is equal to t,,,,
when the current surface vertice is entirely outside the femur
that all the vertex in the search area is outside the femur.

Then, a biased average intensity I, that used in the calcu-
lation of third update component may be determined using T:

(23)

@4

~1

> lpin

T
Ib=9_ _
I = fo*tmax I = tin

A bias factoris enforced on the average intensity T when the
current vertice is entirely outside the femur. The reason for
introducing a biased intensity of T is to let the deformation
move the surface point both outward and inward.

Otherwise, the surface will be forced as convex. The factor
f, may be set empirically, for example as 0.01, which was
found to provide a good result for most of the testing femur
MRI. The third update component may then given by:

Ip —th 25

P - 7 (25)
Where 1 is calculated by:

I=0.5* (s tmin) (26)

The constant intensity I act as a normalized factor to limit
the update component to a small value with absolute value
less than 1. If the current vertice lies tightly inside the femur,
f; and causes the deformable model to expand; while, if the
current vertice goes entirely outside of femur, f; causes the
deformable model to shrink. The deformable model ceases to
change only when the vertice is on the surface of femur.

Like in BET, the third component may be multiplied with
0.051, which balances the intensity-based term and the pre-
viously calculated smoothness term, where the I represents
the mean intensity-based distance. Then, the full version of
the third update component is:

u3=0.05/,15, @7

Based on the three components, the final update equation is
formed to calculate the deformation vector u in each iteration:

4=0.55,4+f55,+0.05£315,, (28)
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A self-intersection checking may also be performed after
the deformable loop. If self-intersection is detected, the modi-
fied BET iteration is repeated following the same smoothness
increasing method described in BET.

3-D Mask and Selection/Resection Rule

Since the modified BET deformation takes the pre-pro-
cessed MRI dataset as input, the output is also a binary image.
However, a multi-intensity segmented femur MRI is desired
rather than a binary image. Actually, the mesh generated by
modified BET can be used as a 3-D mask and applied to the
original femur MRI. Adopting a simple selection/rejection
rule, all vertex inside the mesh/3-D mask are assigned with
the corresponding intensity in original MRI and all vertex
outside are setto t,,,,,. After the selection/rejection procedure,
the segmented femur MRI is obtained.

FIG. 48 illustrates an embodiment of a method 4800 of an
FET. At 4802, an patient is examined, for example by a CT,
MRI, PET scanner, etc. At 4804, the output of a scan is
received or retrieved. At 4806, the bone is extracted from the
data set, and the tissue is excluded. At 4808, the dataset is
optionally segmented to select a mesh, e.g., an internal or an
external mesh. At4810, MC is employed to create a topology
of the corrected mesh. At 4812, the mass of the bone is
estimated. At 4814, the results are evaluated, which may
include both automated analysis and analysis by medical
personnel. Looking at this scheme of an embodiment it is
possible to appreciate the whole path of a medical exam, from
the scan to the diagnosis made by one or more doctors. The
scanner produces a density map in a certain file format. This
stream of data is processed by a first algorithm of the FET.
This procedure at 4806 has the role to eliminate the soft
tissues from the dataset and preserve just the elements
belonging to the bone. The following optional step 4808, may
be useful for successive re-mesh. It chooses a single mesh to
visualize from s set of surfaces available. It is possible to
choose the most internal one to reveal some particular details
or the external one to better appreciate the shape of the super-
ficial part of the bone.

Next follows Marching Cubes re-meshing step 4810,
which creates a polygonal model of the dataset received in
input, according to a threshold, which may be chosen by the
user. A mass computation step 4812, which may exploit the
parallelization of the MC, estimates the mass of the object
shown by Marching Cubes step. The data produced by those
steps may be evaluated in order to arrive to the diagnosis. FIG.
40 compares an image generated by an embodiment of an
FET with an original image. As can be seen, the image is
brighter because the dark part of the bone shell has been
removed.

The inventors introduced an extension of a linear elastic
tensor-mass method allowing fast computation of non-linear
and visco-elastic mechanical forces and deformations for the
simulation of biological tissue. The inventors developed a
simulation tool for the planning of bone surgical treatment
based on CT data of a patient. Surgery simulation requires
accurate modeling of the mechanical behavior of soft tissue
and bone. In the inventor’s systems, all joints were defined as
contact surfaces, which allow relative articulating movement.
The major ligaments were simulated using tension-only truss
elements by connecting the corresponding attachment points
on the bone surfaces. The bony and ligamentous structures
were embedded in a volume of soft tissues. The muscles were
defined as non-linear visco-elastic material, the skin, liga-
ments and tendons were defined as hyperelastic, while the
bony structures were assumed to be linearly elastic. The mul-
tilayer FEM model containing thighbone, tibia, fibula, knee-
cap, soft tissue was formed after meshing. Diverse forces
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were imposed on the FEM model. The results showed that the
multilayer FEM model may represent tissue deformation
more accurately.

The inventors propose a method for automatically correct-
ing the spherical topology of any segmentation under any
digital connectivity. A multiple region growing process, con-
currently acting on the foreground and the background,
divides the segmentation into connected components and
successive minimum cost decisions facilitate convergence to
correct spherical topology. In contrast to existing procedures
that suppose specific initial segmentation (full connectivity,
no cavities . . . ) and are designed for a particular task (cortical
representation), no assumption is made on the initial image.
The method applied to subcortical segmentations was able to
correct the topology of fourteen non-cortical structures in less
than a minute.

Some embodiments may take the form of computer pro-
gram products. For example, according to one embodiment
there is provided a computer readable medium comprising a
computer program adapted to perform one or more of the
methods described above. The medium may be a physical
storage medium such as for example a Read Only Memory
(ROM) chip, or a disk such as a Digital Versatile Disk (DVD-
ROM), Compact Disk (CD-ROM), a hard disk, a memory, a
network, or a portable media article to be read by an appro-
priate drive or via an appropriate connection, including as
encoded in one or more barcodes or other related codes stored
on one or more such computer-readable mediums and being
readable by an appropriate reader device.

Furthermore, in some embodiments, some or all of the
systems, circuitry and/or modules may be implemented or
provided in other manners, such as at least partially in firm-
ware and/or hardware, including, but not limited to, one or
more application-specific integrated circuits (ASICs), dis-
crete circuitry, standard integrated circuits, controllers (e.g.,
by executing appropriate instructions, and including micro-
controllers and/or embedded controllers), field-program-
mable gate arrays (FPGAs), state machines, complex pro-
grammable logic devices (CPLDs), etc., as well as devices
that employ RFID technology. In some embodiments, some
of'the modules or controllers separately described herein may
be combined, split into further modules and/or split and
recombined in various manners.

The systems, modules and data structures may also be
transmitted as generated data signals (e.g., as part of a carrier
wave) on a variety of computer-readable transmission medi-
ums, including wireless-based and wired/cable-based medi-
ums.

The various embodiments described above can be com-
bined to provide further embodiments. Aspects of the
embodiments can be modified, if necessary to employ con-
cepts of the various patents, applications and publications to
provide yet further embodiments.

These and other changes can be made to the embodiments
in light of the above-detailed description. In general, in the
following claims, the terms used should not be construed to
limit the claims to the specific embodiments disclosed in the
specification and the claims, but should be construed to
include all possible embodiments along with the full scope of
equivalents to which such claims are entitled. Accordingly,
the claims are not limited by the disclosure.

Example lines of code that implement an embodiment of a
procedure for determining the mass of the cubes crossed by
the iso-surface are set forth below.
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total__grid_ value = 0;
small__cube__number = 0;
for (fc = 0; fc < glob—>dimension; fo++) {
for (sc = 0; sc < glob—>dimension; sc++) {
for (tc = 0; tc < glob—>dimension; tc++) {

//let’s make trilinear interpolation!!
q=(fc+0.5)/glob—>dimension;

s=(sc+0.5)/glob—>dimension;

t=(tc+0.5)/glob—>dimension;

partial__grid_ value =(1-q@ * (l-s) *(1-t) *grid.m_ val_original[0] +
(1-q) * (1-s) * t * grid.m__val_ original[1] +
(1-q) * s * t * grid.m__val_ original[2] +
(1-q) * s * (1-t) * grid.m_ val_ original[3] +
q * (1-s) * (1-v) * grid.m__val_ original[4] +
q * (1-s) * t * grid.m__val_ original[5] +
q * s * t * grid.m__val__original[6] +
q * s * (1-t) * grid.m__val_ original[7];
trilinear__isolevel =(1-q@ * (l-s) *(1-t) *grid.iso_level[0] +
(1-q) * (1-s) * t * grid.iso__level[1] +
(1-q) * s * t * grid.iso__level[2] +
(1-q) * s * (1-t) * grid.iso__level[3] +
q * (1-s) * (1-v) * grid.iso__level[4] +
q * (1-s) * t * grid.iso__level[5] +
q * s * t * grid.iso__level[6] +
q * s * (1-t) * grid.iso__level[7];

if (partial_grid_ value <= trilinear_isolevel) {
small__cube__number++;
total__grid_ value += partial_grid_ value;}
I
if (small__cube__number != 0) {
average_ grid_ value =total__grid_ value / (double)small__cube_ number;

volume__fraction = (double)small__cube__number / (double)(glob—>dimension*glob—
>dimension*glob—>dimension);

total__mass += volume__fraction * glob—>dists[0] * glob—>dists[1] * glob—

>dists[2] * average_ grid_ value;

The invention claimed is:
1. A system, comprising:
a memory; and
one or more processing devices configured to:
determine intersection points of a representation of a
surface in an image space with cubes defining the
image space, the surface defining a surface of an
object, the determining the intersection points includ-
ing:
defining an initial representation of the surface in the
image space;
refining the initial representation of the surface in the
image space by segmenting the object and refining
the initial representation to correspond to a seg-
mented portion of the object; and
determining the intersection points of the refined rep-
resentation of the surface with the cubes defining
the image space; and
determine an estimated mass of at least a portion of the
object by:
determining an estimated mass contribution of a first
set of cubes contained entirely within the represen-
tation of the surface;
determining an estimated mass contribution of a sec-
ond set of cubes having intersection points with the
representation of the surface; and
estimating a mass of the at least a portion of the object
based on the estimated mass contribution of the
first set of cubes and the estimated mass contribu-
tion of the second set of cubes, wherein refining the
initial representation comprises deforming the ini-
tial representation by iteratively applying local
movement vectors to vertexes of a plurality of tri-
angles defining the surface and a local movement
vector u of a vertex of a triangle is defined by:

u=u )+t
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where u, is a vector component representing local movement
within the surface, u, is a vector component representing
local movement along surface normal, and u; is a vector
component representing local movement deforming the sur-
face toward a surface of the segmented object.
2. The system of claim 1 wherein the object is one of a
human brain and a human femur.
3. A system, comprising:
a memory; and
one or more processing devices configured to:
determine intersection points of a representation of a
surface in an image space with cubes defining the
image space, the surface defining a surface of an
object; and
determine an estimated mass of at least a portion of the
object by:
determining an estimated mass contribution of a first
set of cubes contained entirely within the represen-
tation of the surface;
determining an estimated mass contribution of a sec-
ond set of cubes having intersection points with the
representation of the surface; and
estimating a mass of the at least a portion of the object
based on the estimated mass contribution of the
first set of cubes and the estimated mass contribu-
tion of the second set of cubes, wherein the one or
more processing devices are configured to deter-
mine the estimated mass, Mass, of the at least a
portion of the object according to:

n m
Mass = Z Vieds + Z Vo daiis
T T
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where n is a number of cubes in the first set of cubes, V,_is a
volume of a cube in the first set of cubes, d, is an average
density of the cube in the first set of cubes, m is a number of
cubes in the second set of cubes, V,, is a volume of a portion
of a cube in the second set of cubes contained within the
surface, and d,; is an average density of the portion of the
cube in the second set of cubes.

4. The system of claim 3 wherein the one or more process-
ing devices are configured to determine the intersection
points by:

defining an initial representation of the surface in the image

space;

refining the initial representation of the surface in the

image space; and

determining the intersection points of the refined represen-

tation of the surface with the cubes defining the image
space.

5. The system of claim 4 wherein refining the initial rep-
resentation of the surface in the image space comprises seg-
menting the object and refining the initial representation to
correspond to a segmented portion of the object.

6. The system of claim 5 wherein refining the initial rep-
resentation comprises applying a marching cubes algorithm
to the segmented portion of the object.

7. The system of claim 5 wherein refining the initial rep-
resentation comprises deforming the initial representation.

8. The system of claim 5 wherein the one or more process-
ing devices are configured to process an image dataset asso-
ciating vertexes of the cubes defining the image space with
intensity values indicative of density and the defining the
initial representation comprises:

determining a maximum intensity threshold based on the

dataset;

determining a minimum intensity threshold based on the

dataset; and

determining an intensity threshold based on the maximum

and minimum intensity thresholds.

9. The system of claim 8 wherein refining the initial rep-
resentation comprises deforming the initial representation by
iteratively applying local movement vectors to vertexes of a
plurality of triangles defining the surface.

10. The system of claim 9 wherein a local movement vector
u of a vertex of a triangle is defined by:

U=t HiH,

where u, is a vector component representing local movement
within the surface, u, is a vector component representing
local movement along surface normal, and u; is a vector
component representing local movement deforming the sur-
face toward a surface of the segmented object.

11. The system of claim 3 wherein determining the esti-
mated mass contribution of a second set of cubes comprises
representing a cube in the second set of cubes as a plurality of
sub-cubes and V, is a total volume of the cube in the second
set of cubes multiplied by a ratio of a number of sub-cubes of
the cube in the second set of cubes determined to be within the
at least a portion of the object to a total number of sub-cubes
of the cube in the second set of cubes.

12. The system of claim 11 wherein the total number of
sub-cubes in the cube is four.

13. A method, comprising:

determining intersection points of a representation of a

surface in an image space with cubes defining the image
space, the surface representing a surface of an object;
and

estimating a mass of at least a portion of the object, the

estimating including:
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estimating a mass contribution of a first set of cubes
contained entirely within the representation of the
surface;

estimating a mass contribution of a second set of cubes
having intersection points with the representation of
the surface; and

estimating a mass of the at least a portion of the object
based on the estimated mass contribution of the first
set of cubes and the estimated mass contribution of the
second set of cubes, wherein the estimated mass of'the
at least a portion of the object is:

n m
Mass = Z Vieds + Z Vo daiis
I I

where n is a number of cubes in the first set of cubes, V, .is a
volume of a cube in the first set of cubes, d, is an average
density of the cube in the first set of cubes, m is a number of
cubes in the second set of cubes, V,, is a volume of a portion
of a cube in the second set of cubes contained within the
surface, and d,; is an average density of the portion of the
cube in the second set of cubes.

14. The method of claim 13 wherein determining the inter-
section points comprises:

defining an initial representation of the surface in the image

space;

refining the initial representation of the surface in the

image space; and

determining the intersection points of the refined represen-

tation of the surface with the cubes defining the image
space.

15. The method of claim 14 wherein refining the initial
representation of the surface in the image space comprises
segmenting the object and refining the initial representation
to correspond to a segmented portion of the object.

16. The method of claim 14 wherein refining the initial
representation comprises deforming the initial representa-
tion.

17. The method of claim 13 comprising processing an
image dataset associating vertexes of the cubes defining the
image space with intensity values indicative of density.

18. The method of claim 13 comprising applying a march-
ing cubes algorithm.

19. The method of claim 13 wherein estimating the mass
contribution of a second set of cubes comprises representing
a cube in the second set of cubes as a plurality of sub-cubes
and V,, is a total volume of the cube in the second set of cubes
multiplied by a ratio of a number of sub-cubes of the cube in
the second set of cubes determined to be within the at least a
portion of the object to a total number of sub-cubes of the
cube in the second set of cubes.

20. A non-transitory computer-readable memory contain-
ing instructions configured to cause a processing device to
estimate a mass of an object by performing a method, the
method comprising:

determining intersection points of a representation of a

surface in an image space with cubes defining the image
space, the surface representing a surface of an object;
and

estimating a mass of at least a portion of the object, the

estimating including:

estimating a mass contribution of a first set of cubes
contained entirely within the representation of the
surface;
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estimating a mass contribution of a second set of cubes
having intersection points with the representation of
the surface; and

estimating a mass of the at least a portion of the object
based on the estimated mass contribution of the first
set of cubes and the estimated mass contribution of the
second set of cubes, wherein the estimated mass of the
at least a portion of the object is:

n m
Mass = Z Vieds + Z Vpdais
T T

where n is a number of cubes in the first set of cubes, V,_is a
volume of a cube in the first set of cubes, d, is an average
density of the cube in the first set of cubes, m is a number of
cubes in the second set of cubes, V,, is a volume of a portion
of a cube in the second set of cubes contained within the
surface, and d,; is an average density of the portion of the
cube in the second set of cubes.

21. The non-transitory computer-readable medium of
claim 20 wherein determining the intersection points com-
prises:

defining an initial representation of the surface in the image

space;

refining the initial representation of the surface in the

image space; and

determining the intersection points of the refined represen-

tation of the surface with the cubes defining the image
space.

22. The non-transitory computer-readable medium of
claim 21 wherein refining the initial representation comprises
deforming the initial representation.

23. A system, comprising:

a memory; and

one or more processing devices configured to:

define an initial representation of a surface in an image
space having cubes defining the image space, the sur-
face representing a surface of an object; and

deform the initial representation of the surface by itera-
tively applying local movement vectors to vertexes of
aplurality of triangles defining the surface, wherein a
local movement vector u of a vertex of a triangle is
defined by:

U=t HiH,

whereu, is a vector component representing local move-
ment within the surface, u, is a vector component
representing local movement along surface normal,
and u, is a vector component representing local move-
ment deforming the surface toward a surface of the
segmented object.
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24. The system of claim 23 wherein the one or more pro-
cessing devices are configured to:

segment the object in the image space;

refine the initial representation to correspond to a seg-
mented portion of the object; and

apply a marching cubes algorithm to the refined represen-
tation.

25. A method, comprising:

defining an initial representation of a surface in an image
space having cubes defining the image space, the surface
representing a surface of an object; and

deforming the initial representation of the surface by itera-
tively applying local movement vectors to vertexes of a
plurality of triangles defining the surface, wherein a

local movement vector u of a vertex of a triangle is
defined by:

U=U Uy,

whereu, is a vector component representing local move-
ment within the surface, u, is a vector component
representing local movement along surface normal,
andu, is a vector component representing local move-
ment deforming the surface toward a surface of the
segmented object.
26. The method of claim 25 comprising:
segmenting the object in the image space;
refining the initial representation to correspond to a seg-
mented portion of the object; and
applying a marching cubes algorithm to the refined repre-
sentation.
27. The method of claim 25 wherein the object is one of a
human brain and a human femur.
28. A system, comprising:
means for defining an initial representation of a surface in
an image space having cubes defining the image space,
the surface representing a surface of an object;
means for iteratively applying local movement vectors to
vertexes of a plurality of triangles defining the surface to
produce a refined representation of the surface; and
means for estimating a mass of the object based on the
refined representation of the surface, wherein a local
movement vector u of a vertex of a triangle is defined by:

U=t +irtis,

where u, is a vector component representing local move-
ment within the surface, u, is a vector component rep-
resenting local movement along surface normal, and u,
is a vector component representing local movement
deforming the surface toward a surface of the segmented
object.



